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ABSTRACT

Prevailing research practice today often relies on training dense retrievers on existing large
datasets such as MSMARCO and then experimenting with ways to improve zero-shot
generalization capabilities to unseen domains. While prior work has tackled this challenge
through resource-intensive steps such as data augmentation, architectural modifications,
increasing model size, or even further base model pretraining, comparatively little investi-
gation has examined whether the training procedures themselves can be improved to yield
better generalization capabilities in the resulting models. In this work, we recommend a
simple recipe for training dense encoders: Train on MSMARCO with parameter-efficient
methods, such as LoRA, and opt for using in-batch negatives unless given well-constructed
hard negatives. We validate these recommendations using the BEIR benchmark and find
results are persistent across choice of dense encoder and base model size and are comple-
mentary to other resource-intensive strategies for out-of-domain generalization such as
architectural modifications or additional pretraining. We hope that this thorough and im-
partial study around various training techniques, which augments other resource-intensive
methods, offers practical insights for developing a dense retrieval model that effectively
generalizes, even when trained on a single dataset.

§ github.com/amy-hyunji/lora-for-retrieval

1 INTRODUCTION

Dense neural retrieval methods have been proven to be generally effective in many Information Retrieval
(IR) tasks (Karpukhin et al., 2020; Izacard et al., 2021; Ni et al., 2021a). These methods use learned neural
encoders to obtain dense vector representations of text and the relevance of passages for any given query
is estimated by computing the dot product between their encodings. Dense approaches can outperform
traditional retrieval techniques (e.g., BM25 (Robertson & Jones, 1976)), as they estimate similarity beyond
syntactic matching (Lin et al., 2022).

Neural retrieval models are effective rankers in domains for which large supervised datasets exist (e.g.,
MSMARCO (Campos et al., 2016) or Google NQ (Kwiatkowski et al., 2019)). Conversely, they might
struggle to generalize to settings they have not been trained on, leading to challenges in handling out-of-
domain tasks (Thakur et al., 2021a; Ren et al., 2022; Lupart et al., 2023). In most real-world applications,
supervision data is not available; whereas, retrieval models play a key role in the nascent field of augmented
language models across many new exciting scenarios (Mialon et al., 2023). Thus, it is essential to analyze
techniques that can improve generalization to unseen domains.

∗ Work performed during internship at AI2.
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Many approaches have been proposed to tackle out-of-domain generalization. For example, data augmen-
tation approaches use weak supervision or auxiliary systems to bridge to unseen tasks (Dai et al., 2022;
Bonifacio et al., 2022; Saad-Falcon et al., 2023; Lin et al., 2023). Other works introduce novel architectures
that assess relevance at the token-level multi embeddings rather than employing a single embedding per
passage (Khattab & Zaharia, 2020; Formal et al., 2021; Lee et al., 2023). Moreover, empirical observations
suggest that increasing the model size leads to better out-of-domain performance (Ni et al., 2021b). While
these approaches show significant improvements, they require additional resource-intensive steps: data aug-
mentation requires additional steps of generating new datasets, fine-grained token-level interaction requires
higher inference costs with a large storage footprint, and larger model size requires more GPU memory during
training and inference. Finally, recently proposed approaches use contrastive losses to pretrain domain-
specific encoders without explicit supervision (Izacard et al., 2021; Xu et al., 2022). These methods, while
more effective than statistical IR techniques, still underperform supervised rankers unless they are then also
fine-tuned on large supervised datasets like MSMARCO. In fact, despite being out-of-distribution for many
real-world tasks, large supervised collections remain critical to improving zero-shot retrieval, particularly for
larger and well-trained rankers (Ni et al., 2021b; Rosa et al., 2022; Lin et al., 2023; Weller et al., 2023).

Despite the vast body of work on improving out-of-domain generalization through resource-intensive steps
like data augmentation, novel architectures, and pretraining, we notice comparatively less work has been done
on the training strategies themselves commonly used to fine-tune rankers on large supervised datasets. In
this work, we aim to answer the following question: when training dense models on large data collections,
what procedures lead to better out-of-domain retrieval performance? In particular, we aim to address the
following research questions:

• (RQ1) Do parameter-efficient fine-tuning (PEFT) methods, such as LoRA (Hu et al., 2021), improve
performance on out-of-domain tasks?

• (RQ2) How might we modify the design of our batches for better out-of-domain performance?
• (RQ3) To what extent do our recommendations complement other resource-intensive techniques that

improve out-of-domain generalization?

by identifying key design decisions for training dense retrieval models and conducting a series of carefully
designed experiments that isolate the effects of these various decisions (§3).

Addressing RQ1 in §4, we find that LoRA, one of the most widely-used PEFT techniques, leads to better
out-of-domain generalization performance compared to full parameter tuning. Simultaneously, we validate
an intuitive tradeoff—full parameter tuning still outperforms LoRA on in-domain settings. Nevertheless, we
provide further analysis showing that even when considering this tradeoff between in- and out-of-domain
performance, LoRA may provide more than it gives up. We recommend LoRA as a suitable training approach
when training a model that expects high performance in both in-domain and out-of-domain settings.

Further, addressing RQ2 in §5, we find that contrary to their well-established benefit in in-domain settings,
mined hard negatives may hurt out-of-domain retrieval performance unless selected with great care. On
the other hand, increasing the number of in-batch negatives is consistently beneficial for out-of-domain
performance, a finding that can be opportunistically employed by adopting PEFT as our fine-tuning strategy.
Specifically, under identical GPU configurations, increasing the in-batch size typically yields more robust
performance compared to adding hard negatives.

Finally, addressing RQ3 in §6, we find that our learnings complement other popular yet resource-intensive
techniques for enhancing out-of-domain performance, such as adopting larger base models, novel retriever
architectures (e.g., late interaction models), and additional contrastive pretraining of the base model.

Our results show consistent trends across several encoder-only base models and common dual-encoder
retriever architectures. Combining the findings from RQ1 and RQ2, we speculate that common full parameter
fine-tuning practices are prone to overfitting large popular datasets like MSMARCO. Finally, taking all
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our findings together, our work provides simple, actionable takeaways that yield better out-of-domain
generalization for neural retrieval models that we recommend as complements to other resource-intensive
methods.

2 BACKGROUND AND RELATED WORK

Out-of-domain generalization in information retrieval Many data augmentation techniques have been
proposed as a means to offset limited training data availability (Dai et al., 2022; Bonifacio et al., 2022;
Saad-Falcon et al., 2023; Lin et al., 2023). Fully unsupervised techniques can also be used to circumvent the
lack of domain-specific supervised data (Izacard et al., 2021; Xu et al., 2022). Finally, modifications to the
model itself have been explored, such as combining sparse retrieval (Formal et al., 2021; Gao et al., 2021a),
late-interaction learning (Lee et al., 2023; Khattab & Zaharia, 2020), or using larger encoder models (Ni
et al., 2021b; Neelakantan et al., 2022; Ma et al., 2023). However, as mentioned in §1, all methods come with
computational trade-offs: they might require additional (expensive) training steps or have slower inference
speeds. Therefore, our study aims to investigate various approaches that maximize the advantages of the dense
retrieval approach while improving its generalizability performance, addressing these practical challenges.

Parameter efficient fine-tuning in information retrieval While standard fine-tuning of neural models
typically entails training all model parameters, recent studies highlight the advantages of parameter-efficient
fine-tuning (PEFT) (Houlsby et al., 2019; Hu et al., 2021; Ben-Zaken et al., 2021). PEFT selectively updates
a subset of model parameters or adds additional ones while keeping existing parameters fixed. These
approaches offer several benefits, including reduced storage requirements, shorter training times, and lower
GPU memory costs. Moreover, by not updating or only partially updating original parameters, PEFT helps
prevent catastrophic forgetting and maintains robust performance in continual training (Wang et al., 2020;
Jin et al., 2021; Yoon et al., 2023; Jang et al., 2021). Due to the benefits and its competitive performance
compared to full parameter tuning across various tasks, PEFT is widely used in machine learning (Liu et al.,
2022a; Ustun & Stickland, 2022).

In information retrieval, the standard of full parameter tuning (Karpukhin et al., 2020; Lee et al., 2022b;
Izacard et al., 2021; Formal et al., 2021; Xiong et al., 2020) is also giving way as PEFT gains traction.
Litschko et al. (2022) examined the use of PEFT for multilingual information retrieval; Ma et al. (2022)
studied the use of PEFT to improve in-domain search capabilities; Pal et al. (2023) applied PEFT to sparse
retrieval systems, while Jung et al. (2021) investigated improving hybrid retrieval; Yoon et al. (2023) showed
that PEFT can help adapt generative retrieval systems to new corpora. Tam et al. (2022) is closest to our work
in that they also study PEFT for out-of-domain generalization. We distinguish our work from theirs in several
ways: (1) the scope of our study extends beyond the application of PEFT as we also consider the role of
batch design (e.g., in-batch and hard negatives, §5) and the effect of base models (e.g., model size, continued
pretraining, §6), (2) our experimental methodology (§3) controls for differing amounts of training data seen
by the base model; that is, we train different dense retrievers within an experiment group from the same base
model whereas Tam et al. (2022) use different public model checkpoints fine-tuned on different datasets for
different retrievers, and (3) for PEFT method, we focus on LoRA, which they did not include in their work;
they instead focus on P-tuning v2 (Liu et al., 2022b) for zero-shot out-of-domain retrieval evaluations, as well
as perform a wider sweep of different PEFT methods for in-domain evaluation, which we did not perform.

Batch design in information retrieval When training dense encoders in a contrastive manner, it is not
feasible to compute the loss across a corpus at each training step; instead, the loss is computed over a
smaller subset of positive and negative pairs. Consequently, many works adopt sampling strategies aimed
at improving how training batches are constructed (Zhong et al., 2022; Lee et al., 2019; Min et al., 2022;
Lee et al., 2022a; Qu et al., 2020). When organizing each batch, two aspects are widely known to be key
for retrieval performance: (1) using relevant passages for one query as contrastive samples for other queries
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in the same batch, known as “in-batch” negatives (Lindgren et al., 2021; Xiong et al., 2020; Gillick et al.,
2019), and (2) mining additional passages that are challenging to distinguish from relevant passages, known
as “hard” negatives (Karpukhin et al., 2020; Izacard et al., 2021; Luan et al., 2020; Qu et al., 2020; Wu
et al., 2019). Although the role of batch design has been widely studied for in-domain scenarios, there has not
been an exploration of how such strategies translate to out-of-domain performance. Many works focusing
on out-of-domain generalization tend to report the use of hard negatives without associated investigation to
validate their use (Lee et al., 2023; Izacard et al., 2021; Khattab & Zaharia, 2020; Gao et al., 2021a). We
believe our work is one of the first to question this practice as the de facto standard.

3 EXPERIMENTAL METHODOLOGY

We carefully design an experimental procedure to study our various hypotheses. Specifically, we identify
several key decision points when building a dense retrieval model. We make sure to define decision points
such that: (1) we believe different design options will meaningfully impact end retrieval performance, and (2)
we have the ability to experiment with different design variations at a single decision point while keeping
others fixed, thereby allowing us to study the isolated effect of those decisions at that single decision point. In
this work, our selected decision points are: (1) pretrained base model, (2) dense retriever architecture, (3)
fine-tuning strategy, (4) how batches are constructed, and (5) datasets for training and testing.1

Pretrained base models We center our experimentation around BERT (Devlin et al., 2019), the most
popular choice of encoder-only base model (Karpukhin et al., 2020; Izacard et al., 2021; Khattab & Zaharia,
2020). Additionally, focusing on BERT gives us the ability to study how controlled changes in the base
model affect retrieval performance. For example, one can repeat an experimental run using different variants
of BERT weights: (1) Different model sizes (e.g., Tiny, Small, Base, Large) to study the effect of scale,
(2) RoBERTa (Liu et al., 2019) to study variation as a result of a different pretraining strategy rather than
significant model architectural changes, and (3) Contriever (Izacard et al., 2021) to study variation as a result
of retrieval-motivated continued pretraining using a contrastive loss.

Dense retriever architectures There are various architectural designs of encoder-only retrievers worth
studying. In particular, we consider dual encoder architectures, which use an encoder-only model to embed
queries and documents such that their pairwise relevance can be derived by proximity (e.g., cosine similarity)
in the shared embedding space. In our work, we focus on three widely used designs. In the asymmetric
dual encoder, the weights of the query and document encoders are not shared. Following the architecture
design of Karpukhin et al. (2020), we use the first token embedding (the CLS token embedding) as the
representative embedding. In the symmetric dual encoder, the weights of the query and document encoders
are shared. Following the architecture design of Izacard et al. (2021), we use the mean embedding (average
of all token embeddings) as the representative embedding. In the late interaction dual encoder (Lee
et al., 2023; Khattab & Zaharia, 2020), we use multiple token embeddings as representative embeddings,
unlike the symmetric and asymmetric dual encoders which use a single representative embedding. We follow
the architecture design of Khattab & Zaharia (2020) closely, including sharing the weights of the query and
document encoders and use of the MaxSim operation to score similarity between each query against a bag of
documents.

Fine-tuning strategies We consider both full parameter tuning (FT) and PEFT for fine-tuning experiments.
Among various PEFT methods (Ben-Zaken et al., 2021; Liu et al., 2022a; Ma et al., 2023), we focus on the
low-rank adaptation (LoRA) (Hu et al., 2021) method due to its wide usage (Dettmers et al., 2023; Chen

1We recognize that many of these design options are tightly coupled and difficult to fully study in isolation of each
other. For example, a particular choice of retriever architecture will preclude certain base model choices as well as certain
fine-tuning strategies.
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et al., 2023; Xu et al., 2023). LoRA keeps the pretrained model parameters fixed and integrates trainable rank
decomposition matrices into each layer of the Transformer architecture. A key advantage of LoRA over other
PEFT methods is that it does not increase inference latency, as it combines the trained parameters with the
original weights during inference. We chose a rank of 7 and an alpha of 32, approximately 0.25% of the
original parameter count as trainable parameters.

Batch designs We first consider our options for handling mined hard negatives. While there is a
line of research that shows adding hard negatives mined through a heavy distillation process improves
performance (Santhanam et al., 2021; Formal et al., 2021; Ren et al., 2021), this is resource-intensive and
not broadly accessible. In this work, we focus on simple yet widely-used techniques: (1) BM25, (2) model
self-distillation during training (Karpukhin et al., 2020; Izacard et al., 2021; Khattab & Zaharia, 2020),
which have consistently shown to improve in-domain performance and does not have high dependency on
other dual encoder models, (3) a combination of the two, (4) using dataset-provided hard negatives,2 and
(5) of course, the option to use no hard negatives.

Regarding in-batch negatives, this is driven by adjusting per-GPU batch size where each example in the
batch is a positive query. PEFT methods take up less GPU memory to hold the model, thereby freeing up more
space for larger per-GPU batch sizes. While per-GPU memory limitations can be overcome using gradient
accumulation in many settings when training retrieval models, the use of in-batch negatives is practically
limited to per-GPU batch size and not easily overcome through techniques like gradient accumulation without
significant engineering and computation overhead (Gao et al., 2021b). As such, we define a fixed per-GPU
batch size (B) (see hyperparameters below), as well as settings for twice (2B) and four times (4B) larger
per-GPU batch sizes.

Datasets Focusing on evaluating whether models trained on large supervised datasets can generalize to out-
of-domain tasks, for training, we use NaturalQuestions (Kwiatkowski et al., 2019) and MSMARCO (Cam-
pos et al., 2016), two popular large datasets that have been used successfully used for this purpose (Thakur
et al., 2021a; Lee et al., 2023; Izacard et al., 2021; Gao et al., 2021a).

For testing, we evaluate over 14 different datasets from the BEIR benchmark, which have been used in
works studying out-of-domain generalization of retrieval models (Khattab & Zaharia, 2020; Ni et al., 2021b;
Weller et al., 2023; Tam et al., 2022). We evaluate over TREC-COVID (TR) (Roberts et al., 2020), NFCorpus
(NF) (Boteva et al., 2016), NaturalQuestions (NQ) (Kwiatkowski et al., 2019), HotpotQA (HO) (Yang
et al., 2018), FIQA-2018 (FI) (Maia et al., 2018), ArguAna (AR) (Wachsmuth et al., 2018), Touche-2020
(TO) (Bondarenko et al., 2020), Quora (QU), DBpedia (DB) (Hasibi et al., 2017), MSMARCO (MS) (Campos
et al., 2016), SCIDOCS (SD) (Cohan et al., 2020), FEVER (FE) (Thorne et al., 2018), Climate-FEVER
(CL) (Diggelmann et al., 2020), and SciFact (SF) (Wadden et al., 2020). Of course, when training on
MSMARCO, we treat MSMARCO evaluation as in-domain and all others as out-of-domain; similarly
when training on NQ.

Hyperparameters Following Karpukhin et al. (2020), we trained with effective batch sizes of 128 for
40 epochs with 10% as warmup steps for both asymmetric and symmetric dual encoders unless otherwise
specified3. All experiments are conducted using 8 or fewer A6000 GPUs (40GB memory), making the
per-GPU batch size of 16. We use checkpoints for all pretrained models from Huggingface (Wolf et al., 2019).

2For NaturalQuestions, we use the version of the dataset released by Karpukhin et al. (2020) to utilize their hard
negatives. For MSMARCO, we use the version from its official website and similarly use its provided hard negatives.

3In the case of symmetric dual encoder, due to resource limitations, we conducted experiments with the same
hyperparameters as Karpukhin et al. (2020) rather than Izacard et al. (2021), as Izacard et al. (2021) is trained using a
much larger batch size (1024) and a longer training duration (approximately 77 epochs). Also, please note that replicating
the official contriever with MSMARCO in Izacard et al. (2021) is challenging because the optimizer code and negatives
used during the training step are not released.
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Since the number of training parameters differs for LoRA and FT, we perform early hyperparameter search
over different learning rates ∈ {1e-4, 2e-4, 1e-5, 2e-5, 5e-5} for both the FT and LoRA settings, following
various configurations from previous works (Maillard et al., 2021; Karpukhin et al., 2020; Izacard et al., 2021;
Xiong et al., 2020; Ni et al., 2021b). We found that the optimal learning rate for LoRA tends to be higher
than FT—2e-5 for FT and 2e-4 for LoRA. For late interaction dual encoder, we follow the configuration from
Khattab & Zaharia (2020).

Evaluation Metrics Following the widely used metrics in the BEIR benchmark, we report results in
nDCG@10 which calculates the ranking of the top 10 retrieved documents. All results are calculated with the
official BEIR evaluation code (Thakur et al., 2021b).

4 HOW SHOULD WE TRAIN? COMPARING LORA WITH FULL FINE-TUNING

Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL NQ Avg MS

Asymmetric Dual Encoder

w/o Neg
FT 18.6 64.2 25.7 72.4 7.2 45.3 26.8 31.1 44.1 44.1 57.5 13.8 35.7 37.4 31.1

LoRA 19.5 67.9 27.1 73.4 8.0 49.4 30.0 33.8 45.4 43.5 58.7 15.8 34.2 39.0 30.2

w/ Neg
FT 17.8 63.0 23.5 69.7 6.8 40.6 20.6 26.0 34.8 32.8 54.1 12.6 36.9 33.8 33.2

LoRA 19.5 66.4 27.1 73.0 7.8 48.6 29.2 33.5 44.7 42.2 57.8 15.2 34.1 38.4 30.9

Symmetric Dual Encoder

w/o Neg
FT 22.9 36.4 27.7 83.4 13.2 54.6 13.5 41.0 49.4 30.3 60.7 18.7 33.7 37.3 31.3

LoRA 30.1 39.0 33.8 88.2 11.5 65.0 21.7 34.7 41.8 30.9 70.9 18.2 34.8 40.0 29.4

w/ Neg
FT 19.0 34.7 24.5 67.1 9.6 44.4 11.9 32.4 38.4 20.2 56.6 10.3 35.4 31.1 36.9

LoRA 25.5 34.3 27.9 62.8 10.0 55.7 16.5 33.8 37.8 22.7 64.9 13.8 30.2 33.5 34.6

Table 1: Overall performance of dual encoder models trained on MSMARCO on BEIR benchmark tasks. The highest
scores between the pair of full fine-tuning (FT) and LoRA experiments are in bold. For all encoder architectures, we
see two trade-offs between in-domain and out-of-domain tasks (“Avg” column): (1) FT exhibits higher in-domain
performance but lower out-of-domain performance, and (2) incorporating hard negative (“w/ Neg” rows) consistently
boosts in-domain performance but reduces out-of-domain performance.

In this section, we examine the impact of training techniques on both out-of-domain and in-domain perfor-
mance; namely, we compare LoRA, a parameter-efficient training method, to the traditional approach of
fully fine-tuning all model parameters (FT). We conduct our experiments on two dense retrieval architectures:
asymmetric and symmetric dual encoders.

LoRA consistently shows higher performance in out-of-domain over FT Table 1, compares the perfor-
mance of dual encoder models trained using FT and LoRA techniques on the BEIR benchmarks. Results show
that, on average, retrieval models trained with LoRA outperform FT by 1.6 to 4.6 absolute points (4.3% to
13.7% relative) on out-of-domain datasets. This result is consistent across different architecture, and suggest
that LoRA is a more effective training technique for maximizing out-of-domain performance; conversely,
models fully fine-tuned exhibit better in-domain performance. We speculate that this difference is due FT
models overfitting to in-domain distribution, thus making them less versatile across out-of-domain datasets.

LoRA offers a better trade-off between in-domain and out-of-domain performance Table 2 quantifies
the trade-off between better in-domain performance afforded by FT techniques against better out-of-domain
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Out-Of-Domain (OOD) In-Domain

Avg REL. DIFF (%) MS REL. DIFF (%)

Asymmetric Dual Encoder

w/o Neg
FT 37.4 31.1

LoRA 39.0
+4.1%

30.2
-3.0%

w/ Neg
FT 33.8 33.2

LoRA 38.4
+12.0%

30.9
-7.4%

Symmetric Dual Encoder

w/o Neg
FT 37.3 31.3

LoRA 40.0
+6.8%

29.4
-6.5%

w/ Neg
FT 31.1 36.9

LoRA 33.5
+7.2%

34.6
-6.6%

Table 2: REL. DIFF (%) is the percentage change between LoRA and FT trained models on in-domain and out-of-domain
datasets. Results show that the out-of-domain performance increase of LoRA over FT always more than offset the decrease
in in-domain performance. This suggests that LoRA is a more effective approach for training models that consistently
perform well in both in-domain and out-of-domain scenarios.

generalization with LoRA. It is evident that in all scenarios, the decrease in average performance for out-
of-domain datasets is more pronounced than the gains in in-domain datasets. These findings indicate that
LoRA (PEFT) is a more suitable approach for training models that performs well in both in-domain and
out-of-domain settings.

Asymmetric and Symmetric Encoders achieve similar performance When comparing the two dual
encoder models, we note that the two architectures perform similarly regardless of the training technique
used. While on individual datasets one might significantly outperform the other, their average performance
on out-of-domain tasks is within one absolute point. Therefore, due to their popularity (Ni et al., 2021b;a; Lin
et al., 2023; Karpukhin et al., 2020), we choose to use asymmetric dual encoders for the remainder of our
work, unless otherwise noted.

5 HOW SHOULD WE TRAIN? DESIGNING OPTIMAL BATCHES FOR FINE-TUNING

In this section, we focus on the influence of training batch design on both in-domain and out-of-domain
performance. This includes examining the effects of incorporating hard negatives, a technique commonly
acknowledged for enhancing in-domain performance, as well as the impact of selecting different batch sizes.

Mined hard negatives degrade out-of-domain performance for FT and LoRA models. Table 3 shows
that hard negatives, despite generally enhancing in-domain performance, consistently degrade out-of-domain
nDCG scores. We hypothesize this is due to the fact that models tend to over-adapt to the training dataset
when adding hard negatives, making it challenging to generalize to datasets with differing distributions. In the
experiments, we use negatives from the official MSMARCO dataset following Khattab & Zaharia (2020)4.

We note that FT models are more influenced by hard negatives than models trained with LoRA. while they
benefit more from the inclusion of mined negatives on in-domain tasks, their performance decreases more
severely on out-of domain tasks. The finding suggests that since FT trains a larger number of parameters than

4As some queries are missing negatives, we fill the queries with BM25 negatives.
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Out-Of-Domain (OOD) In-Domain

Avg REL. DIFF (%) MS REL. DIFF (%)

Asymmetric Dual Encoder

FT
w/o Neg 37.4 31.1

w/Neg 33.8
-10.7%

33.2
+6.3%

LoRA
w/o Neg 39.0 30.2

w/ Neg 38.4
-1.6%

30.9
+2.3%

Symmetric Dual Encoder

FT
w/o Neg 37.3 31.3

w/ Neg 31.1
-19.9%

36.9
+15.7

LoRA
w/o Neg 40.0 29.4

w/ Neg 33.5
-19.4%

34.6
+12.9%

Table 3: REL. DIFF (%) represents the percentage change in performance due to using mined negatives. FT shows a
more significant reduction in out-of-domain (OOD) performance and a higher increase in in-domain (IN) performance
relative to LoRA.

Asymmetric Dual Encoder Symmetric Dual Encoder

FT LoRA FT LoRA

Similar Distribution (%) -8.6% -1.4% -16.7% -11.8%

Different Distribution (%) -11.1% -1.7% -18.8% -18.8%

Table 4: Relative change in performance from using hard negatives. We partition out-of-domain datasets in BEIR by
how similar they are to MSMARCO. Similarity is assesses by sampling 50 documents from each dataset, and comparing
their average Contriever embeddings. Datasets that are most dissimilar to MSMARCO have consistently higher relative
decrease in performance than the group of most similar datasets.

LoRA, it becomes more attuned to the given datasets, and further gets more affected by hard negatives. This
results in more pronounced improvements in in-domain performance, but at the cost of a larger decrease in
out-of-domain performance.

Experimental evidence suggests hard negatives encourage overfitting to training data distribution. We
set out to investigate our hypothesis—performance decline when incorporating hard negatives is due to over-
specialization to a specific training dataset—by empirically assessing whether dateset that are most dissimilar
from training data are more severely affected. To assess similarity between datasets, we randomly select 50
instances from a corpus of each dataset and compute the inner product of embeddings from contriever (Izacard
et al., 2021). The dataset most frequently identified as top-ranked, excluding its own dataset, was considered
the most similar. After identifying the most relevant dataset for each dataset, we then grouped them together.
Repeating this process five times, we categorize datasets grouped with MSMARCO more than three times
as similar distribution. The BEIR datasets most similar to MSMARCO are trec-covid, NFcorpus, scidocs,
scifacts, and arguana (see Appendix B for details).

We summarize our findings in Table 4. Results show that datasets that are most similar to MSMARCO exhibit
a smaller performance drop when hard negatives are added. When comparing the average drop rates between
these groups, we observed that those in similar domains showed a lesser reduction (average of 3%) compared
to those grouped in different distributions. This suggests that training with hard negatives tends to overfit the
model to its training dataset, reducing its effectiveness on datasets with different distributions.
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Out-Of-Domain (OOD) In-Domain

Batch Size FI TR NF QU SD SF TO AR HO DB FE CL NQ Avg MS

FT B 18.6 64.2 25.7 72.4 7.2 45.3 26.8 31.1 44.1 44.1 57.5 13.8 35.7 37.4 31.1

LoRA

B 19.5 67.9 27.1 73.4 8.0 49.4 30.0 33.8 45.4 43.5 58.7 15.8 34.2 39.0 30.2

2 × B 20.7 71.1 27.5 76.1 8.0 51.5 30.8 33.9 46.3 44.2 58.7 14.2 34.1 39.8 31.0

4 × B 20.9 71.4 28.3 75.5 8.1 52.6 30.2 34.3 47.2 44.8 59.7 14.7 35.0 40.2 31.8

Table 5: Increasing batch size (increasing the number of in-batch negatives) consistently helps both in-domain and
out-of-domain performance.

Unlike mined negatives, using larger batch size increases both in-domain and out-of-domain perfor-
mance. In Table 5, we observe that using larger batch sizes, which include a greater number of in-batch
negatives, enhances performance both within and outside the domain. This observation suggests that, under
certain GPU configurations, to boost performance across both domains, increasing batch size could be a
more effective strategy than incorporating hard negatives. We hypothesize that this is because hard negatives
often lead the model to over-adapt to certain distributions. On the other hand, in-batch negatives, which
are typically random negatives, do not exhibit such a tendency. Moreover, since LoRA demands less GPU
memory, it enables the use of larger batch sizes under the same GPU constraints compared to FT. In our
experiments, LoRA with a batch size quadruple that of FT consumes a similar amount of GPU memory.

6 HOW COMPLEMENTARY ARE OUR FINDINGS WITH OTHER RESOURCE-INTENSIVE
METHODS FOR OUT-OF-DOMAIN RETRIEVAL?

In this section, we investigate (1) the impact of increasing model size, (2) the use of late-interaction retrieval
architectures, and (3) whether our findings still add benefit on top of more powerful base models that have
undergone additional pretraining.

Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL NQ Avg MS

Bert Large

w/o Neg
FT 19.3 70.0 26.5 76.7 7.5 47.6 28.1 31.5 42.5 43.5 57.0 14.1 36.1 38.5 32.9

LoRA 23.2 76.7 28.2 79.6 8.5 54.9 26.1 34.1 45.9 45.0 57.3 15.4 36.6 40.9 31.4

w/ Neg
FT 17.5 69.5 23.3 74.6 7.2 44.4 22.7 30.7 40.5 42.8 54.5 11.7 37.3 36.7 34.4

LoRA 22.7 75.0 28.2 78.5 8.4 54.3 25.2 31.9 42.3 44.3 56.5 15.5 34.6 39.8 32.1

RoBERTa Large

w/o Neg
FT 24.5 65.9 27.9 77.8 9.0 48.1 30.2 32.1 41.5 40.6 58.7 14.7 34.5 38.9 34.0

LoRA 29.0 73.7 28.8 78.6 9.4 55.2 26.2 37.8 43.7 42.7 59.9 18.4 35.5 41.5 32.1

w/ Neg
FT 24.5 55.9 25.9 77.8 7.0 48.1 22.2 32.1 38.5 36.6 56.7 13.7 32.5 36.3 35.9

LoRA 28.0 70.2 28.7 76.1 8.3 53.2 25.9 36.7 42.5 41.9 58.9 16.8 36.8 40.3 34.5

Table 6: Overall BEIR performance of RoBERTa-large and BERT-large, two similar base model architectures and size
but with different training strategies. (1) Performance tends to increase when using RoBERTa-large. (2) Our findings
about the benefits of LoRA (§4) and the possible detriment of hard negatives (§5) hold here as well.
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Figure 1: Overall BEIR performance of different base model sizes of asymmetric dual encoder trained with MSMARCO
(without hard negatives). Performance consistently increases with larger encoder models for both in-domain and out-of-
domain. Notation in x-axis indicates S: Bert Small, M: Bert Medium, B: Bert Base, L: Bert Large

Impact of increasing model size: out-of-domain performance improves with better base model especially
in LoRA We study whether our findings hold when increasing the size of the base model, such as in Ni
et al. (2021b). Figure 1 shows results using BERT models in four different sizes (small, medium, base, large)
finetuned on MSMARCO. We can see that larger base model consistently leads to higher performance in all
cases See Appendix Table 11 for numerical results. From this table, we also validate our earlier findings about
the trade-offs between in-domain versus OOD performance when using LoRA versus FT and the possible
detrimental effects of using hard negatives.

We further experiment by switching the base model from BERT-large to RoBERTa-large, a model trained
with more optimized hyperparameters (Table 6). We observe that when training with RoBERTa-large instead
of BERT-large, both in-domain and out-of-domain performance show improvement. And of course, we
re-validate our consistent findings about LoRA versus FT and hard negatives from earlier.

Looking deeper into the LoRA versus FT tradeoff, we can see that LoRA tends to benefit more by using
a better base model (Table 7). This matches intuition as PEFT does not update many of the base model
parameters; therefore, as the base model improves, so does the performance of a LoRA trained model as it
can use much more information from the frozen parameters. FT, on the other hand, updates the whole base
model and is more likely affected by forgetting and shifts in the distribution across all parameters.

OOD Avg In-domain

Medium Base Large Medium Base Large

FT 1.9% 3.3% 6.4% 3.5% 7.6% 11.6%

LoRA 1.9% 4.3% 9.4% 3.2% 9.0% 13.4%

Table 7: Performance using larger BERT model sizes relative to performance using BERT-small weights. (1) Performance
improves monotonically with model size. (2) LoRA tends to benefit more from a larger base model compared to FT.
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Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL NQ Avg MS

FT 31.9 65.1 31.8 83.8 15.1 67.5 19.5 24.0 58.4 38.7 77.9 18.2 51.7 44.9 39.2
LoRA 32.5 64.4 32.7 83.3 15.6 68.5 21.6 37.4 61.1 33.6 78.6 19.1 51.2 46.1 37.2

Table 8: Overall BEIR performance of a token-level late-interaction dual encoder following Khattab & Zaharia (2020)
and trained on MSMARCO. Like all other models tested, we see a clear performance trade-off between FT, which is
better for in-domain performance, and LoRA, which is better for out-of-domain performance.

Use of token-level late-interaction models We experiment with a late interaction dual encoder model
following Khattab & Zaharia (2020)to see whether our findings persist in retrieval architectures that involve
more resource-intensive steps.5 Table 8 shows a similar trend to what we observed in asymmetric and
symmetric dual encoders; LoRA surpasses FT in out-of-domain settings, whereas FT demonstrates superior
performance in in-domain settings.

Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL NQ Avg MS

Bert Base

FT 22.9 36.4 27.7 83.4 13.2 54.6 13.5 41.0 49.4 30.3 60.7 18.7 33.7 37.3 31.3
LoRA 30.1 39.0 33.8 88.2 11.5 65.0 21.7 34.7 41.8 30.9 70.9 18.2 34.8 40.0 29.4

Bert Base with Contrastive Pretraining (Contriever)

FT 26.9 40.1 30.5 84.4 14.9 64.4 13.4 40.9 60.6 37.5 68.8 20.4 38.9 41.7 32.8
LoRA 26.9 44.6 33.9 88.7 15.8 65.7 20.6 36.2 62.3 38.3 71.5 19.0 37.1 43.1 31.5

Table 9: Comparison between two encoder models derived from a BERT-base and Contriver checkpoint. Contriver was
obtained by further training a BERT-base model on a large unlabeled collection using a contrasive loss. Performance
tends to increase when changing the base encoder model to that pretrained with contrastive loss.

The effectiveness of employing models pre-trained on contrastive loss as the initial base model We
conduct experiments to determine if our findings are consistent when using encoder-only base models
pretrained with contrastive loss. Specifically, we use the Contriever pretrained model weights (Izacard et al.,
2021). Table 9 shows that switching to this base model with additional pretraining significantly improves
performance, especially in average OOD performance.

Importantly, we see again that our earlier findings persist even with this more powerful base model. We see
again that LoRA shows superior performance in OOD settings but worse performance in in-domain settings.
However, we notice that there is LoRA benefits less when trained on Contriever compared to BERT-base.

When comparing the rate of improvement for average OOD performance and the rate of degradation for
in-domain between FT and LoRA, we can see that (1) the rate of improvement in average OOD performance
using Contriever (3.36%) is not as substantial as that using BERT-base (7.24%) and (2) the improvement rate
in OOD (3.36%) is smaller than the degradation rate than on in-domain settings (3.96%). We hypothesize that
this is due to Contriever’s adaptation to various domains during its pretraining with a massive unsupervised

5Our FT numbers are obtained through a replication of Khattab & Zaharia (2020) experiments, which was necessary
to make a fair comparison between LoRA and FT, as opposed to using their released weights. Nevertheless, our results
are very close to the ones reported in Thakur et al. (2021b), indicating our successful replication. For more details, see
Appendix A.

11



FT LoRA FT LoRA
0

10

20

30

40

NQ
OOD Avg
In-Domain

FT LoRA FT LoRA
0

10

20

30

40

MSMARCO

Figure 2(a): Performance of Asymmetric Dual Encoder
when trained with NQ (left). Results tend to be similar to
that of MSMARCO (right): LoRA tends to show higher
performance in out-of-domain (OOD) but lower perfor-
mance in in-domain.

BM25
+DPR DPR

BM25
Non

e

BM25
+DPR DPR

BM25
Non

e
0

10

20

30

40

50

FT

In-Domain
OOD Avg

BM25
+DPR DPR

BM25
Non

e

BM25
+DPR DPR

BM25
Non

e
0

10

20

30

40

50

LoRA

Figure 2(b): Performance of dual encoders trained on the
NQ dataset with different negative sampling strategies.
Adding hard negatives improves in-domain performance
but degrades out-of-domain (OOD) performance for both
FT and LoRA.

dataset, making it less likely to over-adapt to a specific training dataset’s distribution and maintaining its
generalizability.

7 DO FINDINGS GENERALIZE TO OTHER TRAINING DATASETS? A CASE STUDY ON
GOOGLE NATURAL QUESTIONS

To analyze whether findings presented in § 4–6 generalize to different training datasets, we experiment over
another widely used retrieval collection, Google Natural Questions (Kwiatkowski et al., 2019) (NQ). While
NQ is significantly smaller than MSMARCO (NQ is comprised of 307k training examples, while MSMARCO
contains over 1M queries and 8.8M passages) and only contains passages extracted from Wikipedia, we note
that trends observed on models trained on MSMARCO generally hold constants for NQ, suggesting that they
generalize across training datasets.

Models trained on MSMARCO or NQ have similar in- and out-of-domain performance characteristics
Figure 2a compares the performance of a dual encoder model trained on MSMARCO and NQ. Results show
similar trends across the datasets: full fine-tuning generally improves in-domain performance, but LoRA
achieves better nDCG@10 on out-of-domain tasks in BEIR.

Many hard negative mining approaches remain detrimental to out-of-domain performance Similarly to
MSMARCO in §5, using mined hard negative when training on NQ seems to negatively affect out-of-domain
performance. Figure 2b compares the effect of negatives on in-domain and out-of-domain performance for
FT and LoRA trained asymmetric dual encoders. Compared to §5, we experiment with two different rankers
to select hard negatives: BM25 and model-based negatives (DPR6). We also evaluate using a combination
of both (“BM25+DPR” in fig. 2b). While all three mining approaches yield improvements in in-domain
performance, they are rivaled or bested by using in-batch negative only (“None” in fig. 2b). This finding is
consistent for both FT and LoRA-trained models. Overall, our observations support previous research calling
for careful selection of hard negatives (Santhanam et al., 2021). Further, they highlight how the wrong mining
approach is far more likely to hurt out-of-domain performance than in-domain performance, as, in the latter
case, incorporating negative examples is consistently beneficial.

Advantages of LoRA on out-of-domain generalization is consistent across model sizes. Figure 3
presents the in-domain and out-of-domain performance across various model sizes. We can see that the trend

6We use the negatives provided from https://github.com/facebookresearch/DPR
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Figure 3: Impact of model size on the performance of dual encoders trained on NQ. Larger models consistently
lead to higher performance in both in-domain and out-of-domain (OOD). LoRA shows larger gains when
moving to larger models.

when trained with MSMARCO persists; a superior base model consistently yields enhanced performance in
out-of-domain scenarios, with LoRA especially benefiting more from an improved base model. Surprisingly,
the data shows that using RoBERTa-large as the base model enables LoRA to exhibit higher performance
than fine-tuning (FT), even in the in-domain setting.

MSMARCO vs. NQ as training dataset We observed that fine-tuning with MSMARCO consistently yields
robust performance (Table 1), surpassing that achieved with NQ (Table 12 in Appendix D.1), confirming
trends observed by Thakur et al. (2021a) and Ni et al. (2021b). In terms of the average out-of-domain
performance reduction rate, models trained with LoRA exhibit a lower reduction rate of 17.4% compared to
when training full parameter (FT), which shows a 20.2% reduction. To calculate the average out-of-domain
performance, we averaged the reduction rate excluding MSMARCO and NQ data. This pattern indicates that
LoRA experiences a smaller performance drop with fewer training datasets, a trend consistent with previous
studies in parameter efficient methods (Ustun & Stickland, 2022; Litschko et al., 2022).

8 CONCLUSION

In this work, we investigate the impact of training strategies on the generalizability of dense retrieval models.
Our focus is on scenarios that avoid extra resource-intensive steps, such as (1) comparing LoRA with full
fine-tuning and (2) designing optimal batch sizes for fine-tuning. We further examine how these findings align
with other resource-intensive methods for out-of-domain retrieval (i.e., token-level late-interaction models,
scaling model size). Across various experiments, we observe a consistent trend: (1) LoRA invariably enhances
generalizability, and (2) under identical GPU configurations, increasing the in-batch size typically yields more
robust performance compared to adding hard negatives. Furthermore, we find that our insights complement
popular techniques for boosting out-of-domain performance. Our study offers practical, actionable insights
for developing dense retrieval models with high generalizability.
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9 LIMITATIONS

Most of our experiments are conducted on smaller base models relative to some larger choices like Llama (Ma
et al., 2023). We have demonstrated some robustness of our findings under scaling (§6), but further investiga-
tion is needed.

Our study does not explore the compatibility of our approach with data augmentation methods for out-of-
domain generalization. Also, we have not investigated whether our approach maintains its effectiveness when
trained on a diverse combination of domains, rather than a single training dataset (NQ, MSMARCO).

Our focus is primarily on widely-used negative sampling strategies that do not involve resource-intensive
steps like distillation (Santhanam et al., 2021; Formal et al., 2021; Ren et al., 2021), leading to a lack of
exploration in various other negative sampling methods.
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A COLBERT

Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL NQ Avg MS

Beir 31.7 67.7 30.5 85.4 14.5 67.1 20.2 23.3 59.3 39.2 77.1 18.4 52.4 45.1 40.1

Ours 31.9 65.1 31.8 83.8 15.1 67.5 19.5 24.0 58.4 38.7 77.9 18.2 51.7 44.9 39.2

Table 10: “Ours” is the performance of Colbert we replicate for fair comparison and “Beir” is the performance provided
from Table 8, which is widely used. The performance tends to be similar.

To study each training configuration’s impact and ensure a fair comparison, we replicated the experiment
for consistent results (Ours in Table 8). The result aligns closely with the result of Colbert in Thakur et al.
(2021b) (Beir in Table 8).

B CALCULATING DISTRIBUTION SIMILARITY

To explore the impact of hard negatives on datasets within similar distribution, we conduct an analysis using
the BEIR dataset, grouping them based on distribution similarity. To assess similarity, our methodology is as
follows: First, we sample 50 instances from the corpus of each dataset. Second, we generate embeddings
for each instance using contriever (Izacard et al., 2021). Third, for each instance, we compute its similarity
(dot product) with other embeddings, identifying the most relevant dataset, and excluding its original dataset.
Fourth, for each dataset, we determine which dataset appears most frequently (out of 50) and regard this
as the dataset with the most similar distribution. Last, using this information, we cluster datasets that are
interconnected. This process is repeated five times, and we observe that the resulting groupings tend to be
consistently similar. We categorize datasets grouped with MSMARCO more than three times as having a
similar distribution. Consequently, datasets such as trec-covid, NFcorpus, scidocs, scifacts, and arguana
are considered to share a similar distribution with MSMARCO. One thing we notice is that datasets with
Wikipedia as their source consistently tend to be grouped together, leading us to assume that the grouping
shows a high tendency of distribution.

C PERFORMANCE OF DIFFERENT MODEL SIZES WHEN TRAINED WITH MSMARCO

Table 11 presents the overall BEIR performance of various base model sizes of an asymmetric dual encoder
trained on MSMARCO, without adding hard negatives. The performance of both in-domain and out-of-
domain generally improves with the use of larger encoder models.
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Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL NQ Avg MS

Bert Small

FT 18.5 63.7 25.5 75.1 6.5 43.8 27.9 28.9 40.7 41.5 54.0 13.8 30.4 36.2 28.9

LoRA 18.6 71.0 25.4 74.4 7.5 46.4 28.7 29.9 42.0 42.4 56.4 14.9 28.1 37.4 27.7

Bert Medium

FT 18.2 72.7 25.8 74.1 6.8 45.9 27.0 28.8 41.0 41.2 54.2 12.9 31.5 36.9 29.9

LoRA 18.8 71.8 26.0 77.1 7.9 47.6 30.0 30.6 42.1 40.7 57.1 15.3 29.8 38.1 28.6

Bert Base

FT 18.6 64.2 25.7 72.4 7.2 45.3 26.8 31.1 44.1 44.1 57.5 13.8 35.7 37.4 31.1

LoRA 19.5 67.9 27.1 73.4 8.0 49.4 30.0 33.8 45.4 43.5 58.7 15.8 34.2 39.0 30.2

Bert Large

FT 19.3 70.0 26.5 76.7 7.5 47.6 28.1 31.5 42.5 43.5 57.0 14.1 36.1 38.5 32.7
LoRA 23.2 76.7 28.2 79.6 8.5 54.9 26.1 34.1 45.9 45.0 57.3 15.4 36.6 40.9 31.4

Table 11: Overall BEIR performance of different base model sizes of asymmetric dual encoder trained with MSMARCO
(without hard negatives). The best and second best over all the model sizes in bold and underline respectively.

Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL MS Avg NQ

Asymmetric Dual Encoder

FT 16.0 61.2 20.5 31.0 7.3 41.8 24.6 21.6 34.1 40.2 46.4 15.1 21.2 29.3 41.0
LoRA 16.6 63.1 21.2 37.4 8.3 42.6 25.6 22.4 35.0 41.0 52.4 24.6 20.0 31.6 38.2

Symmetric Dual Encoder

FT 6.1 26.8 8.6 75.0 4.9 34.2 2.1 3.1 26.5 5.7 23.1 13.9 6.9 18.2 28.0
LoRA 7.5 22.9 9.8 73.7 6.5 36.0 4.9 5.9 25.3 7.9 23.4 12.8 8.7 18.8 25.9

Table 12: BEIR performance of asymmetric and symmetric dual encoders trained without hard negatives using NQ as
the training dataset. Best from FT and LoRA in bold.

D RESULTS WITH NQ AS TRAINING DATASET

D.1 TRAINING METHOD

Table 12 shows that parameter-efficient training (PEFT) consistently achieves higher performance in out-of-
domain compared to the traditional approach of training full parameters (FT).

D.2 BATCH DESIGN

Adding Hard Negatives Table 13 demonstrates that incorporating hard negatives consistently improves
in-domain performance, yet it often reduces out-of-domain performance. Our experiments use negatives from
(Karpukhin et al., 2020), including BM25 negatives (RBM25) and model-based negatives (RDPR). Please
note that the model used for RDPR is DPR (Karpukhin et al., 2020), a dense retrieval model known for its
superior in-domain performance compared to BM25. RNone is when there is no hard negatives used during
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Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL MS Avg NQ

Full

RBM25+DPR 13.2 42.1 17.6 28.3 5.8 32.1 24.4 20.8 33.8 40.2 48.6 16.1 19.6 26.4 52.7
RDPR 11.8 54.0 19.3 30.2 6.1 35.9 25.6 25.0 34.1 40.7 48.6 16.4 19.5 28.2 52.0

RBM25 10.4 35.5 15.8 19.2 4.9 25.9 19.1 10.8 32.9 38.0 52.6 18.7 18.1 23.2 51.7

RNone 16.0 61.2 20.5 31.0 7.3 41.8 24.6 21.6 34.1 40.2 46.4 15.1 21.2 29.3 41.0

LoRA

RBM25+DPR 13.9 54.5 20.5 22.9 7.5 43.5 26.4 20.8 40.4 45.4 55.0 21.6 20.8 30.2 51.3
RDPR 15.5 63.9 20.7 37.8 7.8 44.5 31.8 25.8 40.8 48.4 50.0 21.6 22.4 33.2 47.8

RBM25 10.2 51.0 17.2 18.5 6.3 28.2 17.8 13.9 35.8 39.1 49.1 18.1 17.1 24.8 43.5

RNone 16.6 63.1 21.2 37.4 8.3 42.6 25.6 22.4 35.0 41.0 52.4 24.6 20.0 31.6 38.2

Table 13: Adding hard negatives consistently enhances in-domain performance (NQ). However, for out-of-domain
tasks, adding hard negatives tends to degrade performance unless they are selected very carefully (LoRA RDPR). Such
results suggest that adding hard negatives makes the model adapt strongly to specific datasets, making it challenging to
generalize effectively across different domains. All experiments in the table use the asymmetric dual encoder with NQ as
the training dataset.

Out-Of-Domain (OOD) In-Domain

batch size FI TR NF QU SD SF TO AR HO DB FE CL MS Avg NQ

Full
B 16.0 61.2 20.5 31.0 7.3 41.8 24.6 21.6 34.1 40.2 46.4 15.1 21.2 29.3 41.0

2 × B 17.3 64.6 22.4 33.0 6.9 45.2 23.5 21.9 34.3 41.9 47.1 16.8 21.6 30.5 46.1

LoRA

B 16.6 63.1 21.2 37.4 8.3 42.6 25.6 22.4 35.0 41.0 52.4 24.6 20.0 31.6 38.2

2 × B 17.0 63.9 21.7 39.7 7.7 44.6 32.1 23.1 35.7 46.7 52.6 25.4 21.3 33.2 41.6

4 × B 17.6 64.8 22.5 42.8 8.3 45.8 29.9 23.1 35.8 43.9 51.8 26.0 22.4 33.4 42.4

Table 14: Increasing batch size consistently improves both in-domain and out-of-domain performance. Experiments are
conducted with asymmetric dual encoders, without hard negatives, and using NQ as a training dataset.

the training step and only with in-batch negatives. RBM25+DPR is when using a mix of DPR and BM25
negatives hard negatives, effectively doubling the training dataset size7.

In both PEFT and FT experiments, we observe that RBM25+DPR achieves the best in-domain dataset
performance, while RNone shows the lowest, confirming that hard negatives enhance in-domain dataset
performance. However, for out-of-domain datasets, RNone performs best, and adding negatives seems to
worsen performance. This indicates that hard negatives may cause the model to overfit to a single training
dataset distribution, limiting its generalization to out-of-domain datasets.

As observed in various studies on hard negative selection (Santhanam et al., 2021; Formal et al., 2021),
we could also see case where hard negatives mined with high-performance models improve out-of-domain
performance (LoRA performance with RDPR). Conversely, RBM25, which utilizes BM25 for negatives,
consistently lowers performance, even when combined with RDPR. We speculate that this significant drop
with RBM25 relates to BEIR’s tendency to show high performance with BM25, leading to a higher incidence
of false negatives. This finding highlights the critical importance of selecting appropriate hard negatives for
out-of-domain performance.

7RBM25+DPR contains twice as many training datasets compared to others since each query includes two instances,
one negative from BM25 and one from DPR
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Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL MS Avg NQ

Bert Base

Full
RDPR 11.8 54.0 19.3 30.2 6.1 35.9 25.6 25.0 34.1 40.7 48.6 16.4 19.5 28.2 52.0
RNone 16.0 61.2 20.5 31.0 7.3 41.8 24.6 21.6 34.1 40.2 46.4 15.1 21.2 29.3 41.0

LoRA
RDPR 15.5 63.9 20.7 37.8 7.8 44.5 31.8 25.8 40.8 48.4 50.0 21.6 22.4 33.2 47.8

RNone 16.6 63.1 21.2 37.4 8.3 42.6 25.6 22.4 35.0 41.0 52.4 24.6 20.0 31.6 38.2

Bert Large

Full
RDPR 14.9 46.6 20.1 59.0 6.1 40.5 20.9 21.3 34.6 37.8 46.1 15.2 19.8 30.1 52.2

RNone 14.8 41.1 22.2 57.6 7.7 44.3 24.3 31.1 34.9 38.9 44.7 16.9 21.5 30.8 43.6

LoRA
RDPR 18.2 58.9 23.3 60.5 7.8 48.2 28.2 31.6 42.2 40.2 51.4 22.2 22.9 35.0 52.4
RNone 18.1 58.4 22.3 58.9 7.5 46.9 26.9 31.3 35.7 34.7 50.0 24.9 20.6 33.6 42.8

RoBERTa Large

Full
RDPR 18.1 40.7 22.0 70.2 6.4 39.4 23.5 35.1 30.4 35.2 42.8 18.6 20.4 31.0 52.4

RNone 19.5 41.4 24.4 72.6 7.4 46.2 22.0 32.3 32.2 35.3 40.8 17.9 22.1 31.9 44.4

LoRA
RDPR 21.8 51.8 25.4 71.8 7.2 48.5 24.8 37.8 38.8 41.2 48.4 25.6 23.2 35.9 56.5
RNone 21.6 51.7 24.3 73.4 7.2 43.4 23.9 37.2 35.7 40.7 46.6 25.7 21.8 34.9 46.1

Table 15: Performance of different sizes of asymmetric dual encoder trained with NQ without hard negatives.

Out-Of-Domain (OOD) In-Domain

FI TR NF QU SD SF TO AR HO DB FE CL MS Avg NQ

FT 13.5 30.4 23.0 72.8 9.2 64.6 4.4 37.9 42.0 14.1 38.8 11.3 10.9 28.7 25.7
LoRA 16.9 28.3 25.3 72.8 9.3 64.8 5.4 35.2 40.1 15.7 40.3 11.7 12.8 29.1 23.7

Table 16: Performance of Colbert trained with hard negatives sampled from DPR model and using NQ as the training
dataset.

Increasing Batch Size Table 14 shows that increasing batch size improves both in-domain and out-of-
domain performance. Such results suggest that when given the same GPU configuration, increasing batch
size would be a good option to further improve performance rather than adding hard negatives.

D.3 ROBUSTNESS OF RESULTS ACROSS DIFFERENT RESOURCE-INTENSIVE METHODS

(1) Increasing model size Table 15 shows that both in-domain and out-of-domain performance tends to
increase with model size and better base model. Having a better base model consistently leads to higher
performance in out-of-domain. LoRA tends to gain more benefits from a better base model, demonstrating
higher improvements when considering the average over total scores and even outperforming in-domain
scenarios.

(2) Use of token-level late-interaction models Table 16 shows the result of Colbert (Khattab & Zaharia,
2020), a widely used token-level late-interaction model, performance when trained with NQ. The trend tends
to persist; LoRA shows higher performance on out-of-domain whereas lower performance in the in-domain
dataset.
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