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ABSTRACT
Explanations are well-known to improve recommender systems’
transparency. These explanations may be local, explaining an in-
dividual recommendation, or global, explaining the recommender
model in general. Despite their widespread use, there has been little
investigation into the relative benefits of these two approaches. Do
they provide the same benefits to users, or do they serve differ-
ent purposes? We conducted a 30-participant exploratory study
and a 30-participant controlled user study with a research-paper
recommender system to analyze how providing participants local,
global, or both explanations influences user understanding of sys-
tem behavior. Our results provide evidence suggesting that both
explanations are more helpful than either alone for explaining how
to improve recommendations, yet both appeared less helpful than
global alone for efficiency in identifying false positives and nega-
tives. However, we note that the two explanation approaches may
be better compared in the context of a higher-stakes or more opaque
domain.

1 INTRODUCTION
Recommender systems are used daily by millions of people, and ex-
planations that clarify a recommender’s behavior are well-known to
improve users’ perceptions of the recommender’s usefulness [2, 4, 5,
13, 14, 29, 54, 55, 57], controllability [2, 17, 29, 35], trustworthiness
[1, 6, 14, 35, 37, 47], and transparency [2, 8, 17, 29, 33, 35, 37, 53].
Some recommenders provide users with local explanations describ-
ing why a specific item is recommended [10, 35]. Others give users
a global explanation describing how recommendations are selected
by the system overall [28, 44]. Still others show both explanations,
which can be presented separately [1, 2, 27, 30, 40, 45, 54] or in a
unified manner [4–6, 11, 17, 49].

Despite the widespread use of local and global explanations in
recommender systems, to the best of our knowledge there has been
no investigation into how each type of explanation influences the
transparency of a recommender system. Recommenders often re-
quire feedback in order to provide high quality recommendations.
Do the two explanation types play complementary roles in helping
users understand how the system may improve recommendations?

∗Work conducted during internship at the Allen Institute for Artificial Intelligence and
Ph.D. at the University of Washington.

Are local explanations used differently if global explanations are
also present, or vice versa? Is one explanation type better for detect-
ing false positive or false negative recommendations? We examine
these questions and more using the recommender Semantic Sanity,
which allows users to create recommendation feeds of computer-
science research papers.

In summary, we make the following contributions:

• A formative study regarding how to present local and global
explanations in a research-paper recommender.

• An exploratory study and controlled user study, each with
30 computer-science researchers, using Semantic Sanity to
investigate several hypotheses surrounding three conditions:
local, global, and local-plus-global explanations.

• Evidence suggesting that 1) both explanations help users
explain how to improve recommendations better than either
alone, but 2) both is less helpful than global alone for effi-
ciency in identifying false positives and negatives. Also, 3)
users prefer less diverse local explanations when a global
explanation is also available.

2 RELATEDWORK
2.1 Local and Global Explanations in Machine

Learning
In machine learning broadly, global explanations explain how a
model behaves generally, while local explanations explain a single
model output, as first distinguished by Ribeiro et al. [47]. With
respect to model transparency, local and global explanations have
been studied from several perspectives. Some works find that local
explanations have advantages over global explanations. Ribeiro
et al. [47] established that local explanations more easily achieve
model faithfulness. Similarly, Guidotti et al. [19] found that local
explanations are more accurate and less complex than global expla-
nations in simulating a black-box model’s decisions. Other studies
discuss benefits from both local and global explanations. For an
image classification task, Mishra et al. [41] observed that local and
global explanations both aid users in estimating model confidence
and gauging their own confidence in the model output. Huber et
al. [25] found that participants shown both local and global ex-
planations instead of either alone performed best in evaluating
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reinforcement-learning agents. For a task predicting risk of recidi-
vism, one study demonstrated that local explanations are more
helpful in discerning algorithmic fairness on a case-by-case basis,
yet global explanations are perceived as more useful for under-
standing the model [12]. Another study showed that data scientists
found both local and global explanations useful in trying to un-
derstand a model. However, novices preferred local explanations,
while experts preferred global explanations [24]. In addition, Ko-
pitar et al. [31] saw evidence that local interpretability provides
additional insight over global interpretability in machine learning
models for type 2 diabetes mellitus screening. We build on these
works to address local and global explanations for transparency of
recommender systems in particular. Recommender systems differ
from most AI systems in that their output cannot be objectively
evaluated as correct or not. Local and global explanations may be
used differently when users must subjectively decide whether or not
a recommendation is good and utilize that information to provide
feedback to the recommender.

2.2 Explanations for Appropriate Trust of AI
When someone has appropriate trust in an intelligent system, they
recognize when it is correct or not [36]. Studies have shown that ap-
propriate trust of AI can be difficult to attain through explanations
[3, 9, 21, 26, 41, 56, 58]. When the AI and user have similar decision-
making performance, two studies found that, when compared to AI
confidence, explanations do not improve team performance [3] or
trust calibration [58] respectively. However, in a study surrounding
a question-answering task, explanations did help users develop
more appropriate trust in comparison to AI confidence [16]. The
authors note this difference may be caused by the fact that, unlike
other tasks, this one’s explanations provide users with previously
unseen information rather than just weighting of already seen ev-
idence. Another study found that the timing and presentation of
explanations can encouragemore or less appropriate trust, but users
prefer settings inducing less appropriate trust [7]. With regards to
local and global explanations, Huber et al. [25] saw that both may
help establish appropriate trust in reinforcement-learning agents.
Meanwhile, Mishra et al. [41] found that, in an image classification
task, global explanations were slightly less helpful for estimating
model confidence in true positives compared to false positives. Here,
we explore how local and global explanations may influence appro-
priate trust of a recommender by investigating if they help users to
identify false positive and false negative recommendations.

2.3 Dimensions of AI Explanations
AI explanations have been designed and studied along several
dimensions in addition to that of local and global explanations.
For one, they may be generated using model-agnostic [38, 47] or
model-specific [34, 38, 39] methods. Theymay be factual, explaining
why a certain model outcome occurred, or contrastive, explaining
why another outcome did not occur; they may also be counterfac-
tual, explaining how another outcome could have occurred instead
[18, 22, 51]. Furthermore, they have been investigated with regards
to diverse user attributes such as their domain expertise [42, 48, 50],
machine-learning expertise [24, 42, 48, 52], stakeholder group (e.g.,
developers, end users) [46], cognitive skills [40], and personality

Figure 1: A paper recommendation in the local condition of
Study 2, with the local explanation open at the bottom.

traits (e.g., openness, neuroticism) [32, 40]. AI explanations have
additionally been compared in terms of various modalities such as
visualization [16, 52], text [52], and audio [16]. Other studies have
varied the length [16] and number [32] of explanations to observe
the impact on cognitive load, as well as the toggle-ability and tim-
ing of explanations to reduce user biasing [7]. Two explanation
dimensions that have been studied specifically in the context of
recommender systems are style (e.g., social-based, content-based)
[15, 32] and actionability [28, 30, 35, 43, 57]. In this paper, the local
and global explanations are content-based and actionable.

3 STUDY 1: FORMATIVE STUDY FOR SYSTEM
DESIGN

We first ran a formative study presenting design mockups for the
recommender Semantic Sanity to six computer-science researchers
in order to determine how best to present local, global, and local-
plus-global explanations. These explanations are terms (unigrams
and bigrams) from papers, a form of the common content-based
explanation [1, 2, 4, 15, 27, 32]. The global terms are those with
the most positive weights in the linear model for selecting paper
recommendations. The local terms are those with the most positive
product of model weight and TF-IDF value for the term’s associated
paper, and we use LIMEADE’s approach [35] for introducing some
randomness to diversify the local terms. We found a majority of
participants preferred that local and global explanations be toggle-
able and that they be presented in a unified manner when both
available. Most participants also desired that they be actionable,
meaning the user may directly manipulate the explanation widget
to provide feedback to the recommender system [35]. Furthermore,
participants easily understood that when local explanations had
varying numbers of terms, only the most significant terms were
shown, so we allowed variable-length local explanations. Within
the constraint of two to four terms total, the system added terms to
the local explanation until the term weights hit a plateau, meaning
the explanation had the most salient terms.

Figure 2 shows the resulting interface for the local-plus-global
condition. In all conditions, users can like or dislike papers and
give feedback on terms considered by the model. In the local-plus-
global condition, the "Feed Explanation" button at the top allows
users to close or reopen a sidebar containing the global explana-
tion. The sidebar presents the top 80 terms most related to the feed
and allows users to search all 15,000 terms. Users can adjust terms’
importance to the feed using the plus and minus buttons. The user
may adjust terms’ ratings between 0.0 and 1.0; one click adds or sub-
tracts 0.1 to a term’s rating. Additionally, users can click the "Paper
Explanation" button under each paper to display a local explanation.
This surfaces two to four paper-relevant terms at the top of the
sidebar, and users can click the carrot underneath them to put the
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Figure 2: User interface for the local-plus-global condition in Study 2. Left: default layout. Right: layout when a local expla-
nation is open. Irrespective of condition, the following features are present: "(More)" button under each paper to see its full
abstract, "More like this"/"Less like this" buttons under each paper to provide feedback, a bookmark button next to each paper
to save it, a "Refresh" button to apply user feedback, an "Undo Term Annotations Applied By Refresh" button shown directly
after refreshing to undo all term annotations applied in the last refresh, and an "Undo All TermAnnotations" button to return
all terms to their original ratings.

Table 1: Metrics considered in Study 2, with corresponding hypotheses defined in Section 4.1.1. The questions are 7-point
Likert-type questions. The two log file metrics (LFM) are from a click log file.

Hypo. Metric ID Metric

- Q0: feed success "The recommendation feed helps me find relevant papers."
H1 Q1: past actions "The explanation(s) help me to understand why the system returned the papers it did."
H2 Q2: future actions "The explanation(s) help me to anticipate what kinds of papers the system will return in the future."
H3 Q3: understand me "The explanation(s) help me to know when the system doesn’t understand my interests."
H4 Q4: change behavior "When the feed is not completely relevant, I can explain how I would like the system to behave to be

more relevant."
H5 Q5: false pos paper "The explanation(s) help me to determine whether a paper is relevant or irrelevant."

Q6: false pos term "The explanation(s) help me to understand which term might cause an irrelevant paper to appear in
my feed."

LFM1 % of annotated terms that are annotated negatively
H6 Q7: false negative "The explanation(s) help me to understand how likely the feed is tomiss papers that I’d consider

relevant."
H7 Q8: local diversity "I would like the Paper Explanations to cover a less diverse set of terms, focusing more on the

highest-rated terms."
H8 LFM2 # of annotated terms

terms in context of the feed’s other top terms. The global condition
looks similar but does not include the "Paper Explanation" buttons.
In the local condition, users can click the "Paper Explanation" but-
ton under each paper to reveal or hide two to four terms explaining
why the paper was recommended (Figure 1). They can also open
all local explanations with a "View All Paper Explanations" button.

4 STUDY 2: EXPLORATORY STUDY
4.1 Study Design
4.1.1 Hypotheses. The objective of Study 2 was to explore how
people use local and global explanations in a research-paper rec-
ommender system. The first six hypotheses concern transparency
and are inspired by target purposes of AI explanations enumerated
in previous work [20, 23]. These hypotheses state that there is at
least one paired difference among the local, global, and local-plus-
global conditions with regards to how helpful they are for... H1:
understanding the recommender’s past actions, H2: understand-
ing the recommender’s future actions, H3: knowing how well the
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system understands the user, H4: understanding how the system
can improve, H5: identifying false positives, and H6: identifying
false negatives. The final two hypotheses address how users’ inter-
actions with the explanations are affected by the explanation types
provided. H7: There is a difference between local and local-plus-
global with regards to how diverse users want the local explanation
terms to be, and H8: there is at least one paired difference among
local, global, and local-plus-global with regards to how much feed-
back users provide on their explanations. The hypotheses’ related
7-point Likert-type questions and log file metrics are outlined in
Table 1.

4.1.2 Participants and Treatments. Thirty researchers who read
at least one computer-science research paper each month inter-
acted with the recommender system in a half-hour to one-hour
session and were compensated with $25 Amazon gift cards. Fif-
teen participants went through both the global and local conditions
in randomized order, and the other 15 interacted only with the
local-plus-global condition. We did not include a baseline condition
(no explanation) because the importance of explanations to recom-
mender transparency is well-established [2, 8, 17, 29, 33, 35, 37, 53].
When signing up for the study, each participant provided two topics
of interest, which would act as their feed topics.

4.1.3 Procedure. We first presented participants with a condition-
specific slide tutorial. We then instructed participants to navigate to
a specified link in order to access the recommender system. Clicks
during the interaction with the system were recorded in a log file.
Next, participants started their recommendation feed about their
preset feed topic by selecting 4 seed papers, found using keyword
search. Once they narrowed down their seed papers, they named
and generated the feed. The participants’ objective was to make
the recommendation feed as relevant to them as possible. They had
15 minutes to do so, but if they felt that the feed was not going
to become any more relevant before 15 minutes had passed, they
stopped early. We also asked participants to think aloud as they
interacted with the system in case there were any helpful insights
into their interactions or they needed a reminder of how to use a
certain system feature.

At the end of each condition, participants filled out a Google
Forms survey without looking at the system. The survey first asked
for short answers regarding in what situations, if any, the partici-
pant found each type of explanation useful. If the participants had
any other thoughts on the explanations, they provided those as well.
After, they answered the Likert-type questions discussed in Table 1.
Lastly, participants returned to their feed and categorized the final
top ten papers as relevant, neutral, or irrelevant. However, since
this data depended heavily on factors other than successful feed
curation (e.g. the number of papers published on the feed topic),
we did not utilize it.

4.2 Results and Discussion
4.2.1 Quantitative Results and Discussion. We organize our dis-
cussion of quantitative results around the hypotheses and met-
rics in Table 1. For the Likert-type questions, we compared the
local and global conditions using the within-subjects two-tailed
Wilcoxon signed-rank test and the remaining condition pairs using

the between-subjects two-tailed Mann-Whitney-Wilcoxon test. Vi-
olin plots for these results are presented in Figure 3. For the log file
metrics, we analyzed all condition pairs using a one-way ANOVA
test. The significance threshold was p < 0.05. Though all the results
were insignificant after Bonferroni corrections, results for H4 and
H7 would be significant without corrections.

Regarding H4, participants in the local-plus-global condition
demonstrated more confidence than the participants in the global
(p=0.015, uncorrected) or local (p=0.030, uncorrected) condition in
explaining how they would like the system to behave to be more
relevant. However, there was no difference indicated between lo-
cal and global. Thus, the results suggest that local and global
explanations together are better than either alone for help-
ing users understand how the recommender system can im-
prove. While similar results have been shown in other machine
learning systems [24, 25], this is a distinct insight for recommender
systems because, unlike those other systems, recommenders do not
have objectively correct or incorrect output. The recommender’s
output is judged and rated according to the user’s own standards.
This personal form of judgment may benefit more or less from local
and global explanations.

In order to create appropriately transparent interactions, a de-
signer needs to know what kinds of information users seek from
local explanations. The result forH7 suggests that the ideal content
of local explanations depends on whether or not a global explana-
tion is present. In particular, participants desired less diverse
and more consistent local explanations when the global ex-
planationwas also present (p=0.038, uncorrected). This may be a
consequence of the "explanation-action trade off" [35], which refers
to how actionable local explanations in recommender systems must
balance two competing goals: 1) returning the most accurate ex-
planations and 2) affording more opportunities for users to adjust
the model. The goals are at odds because the most accurate local
explanations often share the same terms and thus provide fewer
chances for users to adjust the model. We address this in Semantic
Sanity by explicitly introducing randomness to diversify the local
explanations, as Lee et al. does [35]. When local explanations are
alone, they are the only means by which users can act on the sys-
tem, so greater diversity is appreciated by users. In contrast, when
an actionable global explanation is also present, users no longer
depend on local explanations for adjusting the model and can use
them more as a means of explanation, which users may expect to
be consistent with the global explanation and thus less random.

4.2.2 Qualitative Results and Discussion. In their short-answer re-
sponses, participants commented more often that they for-
got or did not find much use for the local explanations as
compared to the global explanation. Of the 30 participants, 9
mentioned either forgetting local explanations or using them rarely,
whereas only one participant mentioned not using the global ex-
planation. However, this difference may be due in part to a user
interface design issue, which is described in Section 5.1.2.

Participants also noted that local and global explanations may
serve different purposes in terms of research exploration and discov-
ery. Four participants explained that the ability to adjust the im-
portance of the global explanation terms was useful to help
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Figure 3: Study 2 results for each Likert-type question and condition. 1 indicates "strongly disagree," while 7 indicates "strongly
agree." Each triangle represents the mean response for the given question and condition, while the circles within each plot
represent individual responses. Q4: With both explanations rather than only global (p=0.015, uncorrected, two-tailed Mann-
Whitney-Wilcoxon) or only local (p=0.030, uncorrected, two-tailed Mann-Whitney-Wilcoxon), participants were more confi-
dent in explaining how they would like the system to behave to be more relevant. Q8: Participants desired less diverse local
explanations when the global explanation was also present (p=0.038, uncorrected, two-tailed Mann-Whitney-Wilcoxon).

them avoid unintended bias towards specific authors or top-
ics. For example, P17 noted, "The system seemed to be suggesting
a particular author and listed that in the feed explanation column.
I reduced that so that I could have a more unbiased feed of people I
don’t often read...." Two participants also mentioned that the global
explanation allowed them to introspect about their own re-
search interests. For instance, P11 commented, "[Global] gave me
a better idea of what my inputs... seemed to have in common." On
the other hand, two participants found local explanations were
useful for characterizing unexpected interesting papers. P24
wrote, “There was a paper suggested to me that I found relevant, but
I was also surprised to find it in my recommendation list. . . [Local]
was useful for me to check out why that paper was recommended (so
that I can see more such papers!).”

5 STUDY 3: CONTROLLED USER STUDY
5.1 Study Design
5.1.1 Hypotheses. Study 2 provided suggestive evidence that both
explanations are better than either alone for understanding how the
recommender may improve. Study 3’s objectives were to confirm
this point and to investigate how local and global explanations com-
plement one another to help users understand recommender output.
Thus, Study 3’s hypotheses were as follows.H9: Local is better than
global for identifying false positive recommendations, H10: global
is better than local for identifying false negative recommendations,
and H11: both are better than either alone for understanding how

the recommender may improve. H11 exists to confirm the sugges-
tive results from Study 2.H9 andH10 reflect a framework for how
local and global may complement each other to make the recom-
mender more transparent. The hypotheses’ associated metrics are
provided in Table 2 and are described further in Section 5.2.

5.1.2 Participants and Treatments. In the same manner as in Study
2, thirty computer-science researchers were recruited and separated
into treatments. Minimal changes were made to the design of the
explanations. Their titles were updated to be purple for emphasis,
and they were renamed to better draw users’ attention. The local
explanations were renamed from "Paper Explanation" to "Why This
Paper," and the global explanation was renamed from "Feed Expla-
nation" to "Why This Feed." Also, as is described in Section 5.1.3,
Study 3’s procedure no longer required participants to curate rec-
ommendation feeds, so the only clickable buttons were for looking
at the explanations and paper abstracts. The remaining buttons
were still included to provide participants with context for how the
recommender system would work overall.

Furthermore, the local-plus-global condition was updated so
that local and global explanations were presented separately. This
update was made because, in Study 2, the unified presentation of
local and global may have led participants to focus less on local
explanations. In the local-plus-global condition, the local explana-
tions could only be opened one-by-one. On the other hand, in the
local condition, participants could open as many explanations as
they wanted. Perhaps due to this user-interface design, even though
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Table 2: Metrics considered in Study 3, with corresponding hypotheses defined in Section 5.1.1. The question is a 7-point
Likert-type question. The score calculations are described in Section 5.2.

Hypo. Metric ID Metric

H9 M1 score on false-positive survey (between -42 and 42)
H10 M2 score on false-negative survey (0 or 1)
H11 Q9 "I can explain how the system should be updated to be more relevant."

participants in the local condition could open all local explanations
with a single click, they still opened an individual local explanation
9.3 times on average, while participants in the local-plus-global
condition opened an individual local explanation only 2.7 times on
average.

When the participants were asked to choose topics of interest
for their feeds in Study 2, the feed topics varied largely in breadth
and familiarity. This may have hindered our ability to observe
significant results in Study 2. As a result, Study 3’s participants
were randomly assigned to one of two preset feeds for each condi-
tion: "misinformation on social media" or "educational technologies
for demographically diverse users." These feed topics were chosen
based on three criteria. First, in order for participants from varying
research areas to engage with the feed, the topic and its explana-
tions needed to use limited jargon. Second, the topic needed to be
specific enough that false positives occurred within the top twenty
papers of the feed. Third, the topic needed to be broad enough so
that a cluster of false negatives emerged. For example, in the "mis-
information on social media" feed, true positives were exclusively
about coronavirus-related misinformation, so any papers discussing
misinformation on social media not related to coronavirus formed
a cluster of false negatives. The preset feeds were seeded with
five papers selected so that the feeds would fit the criteria just
mentioned.

Three annotators classified the top 20 papers of each 250-paper
feed as false or true positives and the bottom 50 papers of each feed
as false or true negatives, based on the papers’ titles and abstracts.
Only papers upon which there was unanimous agreement were
added to the pool of papers that the participants could encounter.
The original local explanations for each annotated paper were then
kept constant, so that no new randomized terms were introduced
for diversification.

Subsequently, the twenty-first paper from the "educational tech-
nologies for demographically diverse users" feed was added to the
pool of papers in order to have enough true positive papers for
the study. Also, the "misinformation on social media" feed had ten
false negatives. Two did not belong to the cluster consisting of
papers discussing non-coronavirus misinformation on social media.
To make sure all participants interacting with this feed would see a
false negative from the same cluster, these two false negatives were
removed from the pool of papers participants could see.

5.1.3 Procedure. Participants first opened a link to the recom-
mender system. For each condition, they then logged into one
of two accounts to access a preset feed with six recommendations.
Next, we gave them a condition-specific tutorial on using the sys-
tem. The participants then answered three Google-Forms surveys
to address each hypothesis.

H9 was addressed first with a false-positive survey. The survey
asked participants to label each of the six paper recommendations
in the feed as relevant or not and rate how confident they were in
their answers on a 7-point scale. The recommendations were ran-
domly ordered and selected such that half would be false positives.
About half of all the true positives had optimal local explanations
containing information pertinent to both aspects of the given feed
topic. For instance, in the "misinformation on social media" feed,
the optimal local explanation may have the term "fake news" related
to "misinformation" as well as the term "twitter" related to "social
media." To make sure this category of true positive was represented
accordingly, one of these true positives was randomly chosen to be
included in each participant’s feed.

H10was addressed next with a false-negative survey. The survey
presented participants with three new paper recommendations for
the feed. Two were true positives and one was a false negative. The
survey asked participants to rank these papers based on how they
believed the recommender system would rather than should rank
the papers. Ideally, the participant would be able to recognize that
the false negative paper would be ranked last by the system.

Finally, H11 was addressed with a survey asking participants to
answer the 7-point Likert-type question Q9. The survey also asked
participants to explain to a software developer how to make the
recommendations more relevant, but we found that participants
did not understand this question as intended, so it was discarded.

5.2 Results and Discussion
We organize our discussion of results around the hypotheses and
metrics discussed in Table 2. The false-positive survey score M1
was calculated as follows. For each of the six recommendations,
if the participant classified it correctly as relevant or not to the
feed topic, 1 multiplied by their confidence (1 to 7) was added to
their cumulative score. If the participant classified it incorrectly, -1
multiplied by their confidence was added. The false-negative survey
scoreM2was 1 if the false negative paper was ranked below the two
true-positive papers and 0 if not. ForQ9, we compared the local and
global conditions using the within-subjects two-tailed Wilcoxon
signed-rank test and the other condition pairs using the between-
subjects two-tailed Mann-Whitney-Wilcoxon test. For M1 and M2,
we analyzed all condition pairs using a one-way ANOVA test. The
significance threshold was p < 0.05. All results were insignificant.

Regarding H11, the slight change in wording of the Likert-type
question Q9 in Study 3 as compared to Q4 in Study 2 may have im-
plied that, in order to respond affirmatively, the participant needed
a more technical rather than merely conceptual understanding of
how the system could improve its recommendations. Also, partici-
pants may have had more trouble conceptualizing how the system
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should improve when they did not choose the feed topic. Both of
these points would explain the overall lower average response to
Q9 of 4.83, as compared to the average response to Q4 of 5.36.

Regarding H9 and H10, while we did not find any significant
differences among the conditions with respect to how well partici-
pants identified false positives or negatives, we did observe uncor-
rected significant differences among the conditions in terms of how
quickly participants completed the false-positive and false-negative
surveys for the "misinformation on social media" feed, as shown in
Figure 4. Each participant’s time spent on each survey was rounded
to the nearest half-minute. These results are uncorrected because
they were not pre-registered for analysis. Twenty-two participants
completed a condition using the "misinformation" feed (8 in the
global condition, 7 in each of the other conditions). We analyzed all
condition pairs for the feed using a one-way ANOVA test followed
by a Tukey HSD test.

With regards to the "misinformation" feed’s false-positive sur-
vey, participants in the local-plus-global condition completed the
survey slower than those in the global (p=0.020, uncorrected) and
local (p=0.045, uncorrected) conditions. These results suggest that
providing both explanations rather than either alone causes
users to identify false positives more slowly. This may simply
be due to the fact that there is more information for users to consider
when both explanations are available.

With regards to the "misinformation" feed’s false-negative sur-
vey, participants in the global condition completed it faster than
the participants in the local-plus-global condition (p=0.018, uncor-
rected). Though insignificant, participants in the global condition
also completed the survey faster than participants in the local con-
dition (p=0.135, uncorrected). The first result suggests that provid-
ing only a global explanation rather than both explanations
helps users identify false negatives more quickly. This makes
sense for two reasons. Firstly, when both explanations are present,
there is more information for users to evaluate. Secondly, in com-
parison to the local explanations, the global explanation’s top terms
provide users a straightforward indication of which terms themodel
may be considering too important or unimportant, which can cause
false negatives. With only local explanations, users must estimate
which terms are most important to the feed by comparing several
local explanations.

There are a few possible reasons why we did not observe the
same results for the "educational technologies for demographically
diverse users" feed. For one, participants generally noted that this
topic was more difficult to understand. With respect to the false
negative finding, this feed’s false negative cluster was the result
of an over-specification rather than an irrelevant specification. The
cluster consisted of papers related to educational technologies for
gender-diverse users. In the global explanation, the only top terms
related to diversity were related to ethnic rather than gender diver-
sity. This issue is likely more difficult to note because, unlike the
irrelevant specification for "covid" in the "misinformation" feed’s
global explanation, the term "cultural" in this feed does contribute
to the feed topic. Terms like "cultural" merely cause the model to
overfit to ethnic diversity when terms related to gender diversity
should also be included. Thus, global explanations may only help
users identify false negatives more quickly when they are the result
of an irrelevant specification, as opposed to an over-specification.

Figure 4: How much time participants spent on the false-
positive (top) and false-negative (bottom) surveys as a func-
tion of the explanation condition, under the "misinforma-
tion on social media" feed. Top: Participants spent more
time on the false-positive survey when both explanations
were present as compared to only global (p=0.020, uncor-
rected, one-wayANOVA) or only local (p=0.045, uncorrected,
one-way ANOVA). Bottom: Participants spent less time on
the false-negative survey when only global was present as
compared to both (p=0.018, uncorrected, one-way ANOVA)
or only local (p=0.135, uncorrected, one-way ANOVA). Pro-
viding the global explanation alone thus appears more help-
ful than providing both explanations for identifying false
positives and negatives efficiently.

Lastly, this feed’s over-specification in the global explanation was
less obvious with fewer related terms than the "misinformation"
feed’s irrelevant specification.

However, in a follow-up formative study that introduced time
constraints for completing the false-positive and false-negative sur-
veys, participants were not evidently better at identifying false pos-
itives or negatives in one explanation setting versus another. There
are a couple reasons why this could be. For one, computer-science
researchers are already accustomed to evaluating the relevance of
paper recommendations without explanations, and perhaps often
based on titles alone. Explanations may not be useful for identifying
false positives and negatives when the recommendations are al-
ready sufficiently transparent, especially in a generally lower-stakes
situation like browsing research papers. In addition, participants
were not necessarily invested in or familiar with the feed topics,
as they were not selected by them. As noted in Study 2, there is a
trade-off in studying personalized feed topics because they can vary
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in breadth and familiarity. Nonetheless, given the lack of mean-
ingful results in Study 3 and the inherent individualized nature
of recommenders, having participants engage with personal rec-
ommendations seems essential to studying recommenders. In a
similar vein, since the feed topics were chosen to be accessible to
all computer-science researchers, identifying false positives and
negatives may have been uncommonly easy.

6 CONCLUSION, LIMITATIONS, AND
FUTUREWORK

Following a formative study to determine how content-based local
and global explanations should be presented in a research-paper rec-
ommender system, we conducted an exploratory study comparing
the use of the two explanation approaches in this system. We found
evidence suggesting that each explanation type plays a unique role
in augmenting the system’s transparency and influences how the
other is used for understanding the system. Specifically, our results
suggest that

• Providing both explanations rather than either alone ensures
users reach the best understanding of how the recommender
can improve, and

• Users prefer more diverse local explanations when they are
presented alone compared to when a global explanation is
also available.

The study also provided qualitative evidence that, in the domain
of research papers, local and global explanations may be useful
for a purpose other than determining recommendation relevance-
exploration and discovery of research.

In a subsequent controlled user study, we investigated how local
and global explanations may complement one another to help users
understand their recommendations, in particular by revealing false
positives and false negatives. While we did not find any significant
differences between the two explanations in terms of utility in
identifying false positives or negatives, we did observe evidence
suggesting that

• Providing both explanations rather than either alone slows
users’ identification of false positives, and

• Providing a global explanation alone rather than both ex-
planations quickens users’ identification of false negatives
caused by unnecessary specifications.

However, a follow-up formative study did not corroborate these
findings.

Limitations of this work include that 1) the user studies were
small-scale and 2) only one recommendation domain (research pa-
pers) and explanation style (content-based) were studied. Future
work may study the use of local and global explanations for more
opaque recommendations such as author or artist recommenda-
tions; an explanation is less necessary when the recommendation
itself summarizes its contents, as is the case with paper recommen-
dations. Future research may also explore how these explanations
are used in higher-stakes recommendation settings, such as ed-
ucation or healthcare, in which explanations likely bear greater
importance. Finally, future work may investigate how local and
global explanations are used for purposes other than clarifying

recommendation relevance, such as discovery of more diverse rec-
ommendations.
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