
When do Generative Query and Document Expansions Fail?
A Comprehensive Study Across Methods, Retrievers, and Datasets

Orion Weller∗ ι Kyle Loα David Waddenα Dawn Lawrie ι

Benjamin Van Durme ι Arman Cohanγ α Luca Soldainiα

ι Johns Hopkins University αAllen Institute for AI γ Yale University

oweller@cs.jhu.edu {kylel, lucas}@allenai.org

Abstract
Using large language models (LMs) for query
or document expansion can improve general-
ization in information retrieval. However, it
is unknown whether these techniques are uni-
versally beneficial or only effective in specific
settings, such as for particular retrieval models,
dataset domains, or query types. To answer this,
we conduct the first comprehensive analysis of
LM-based expansion. We find that there exists
a strong negative correlation between retriever
performance and gains from expansion: expan-
sion improves scores for weaker models, but
generally harms stronger models. We show this
trend holds across a set of eleven expansion
techniques, twelve datasets with diverse distri-
bution shifts, and twenty-four retrieval models.
Through qualitative error analysis, we hypoth-
esize that although expansions provide extra
information (potentially improving recall), they
add additional noise that makes it difficult to
discern between the top relevant documents
(thus introducing false positives). Our results
suggest the following recipe: use expansions
for weaker models or when the target dataset
significantly differs from training corpus in for-
mat; otherwise, avoid expansions to keep the
relevance signal clear.1

1 Introduction

Neural information retrieval (IR) systems rou-
tinely achieve state-of-the-art performance on tasks
where labeled data is abundant (Karpukhin et al.,
2020; Yates et al., 2021). When limited or no data is
available, neural models fine-tuned on data-rich do-
mains are used in zero-shot manner (Thakur et al.,
2021; Rosa et al., 2022b). However, shifts in dis-
tribution of queries and documents can negatively
impact their performance (Lupart et al., 2023).

To mitigate this effect, large-scale Language
Models (LMs) can be used to expand queries or

1Code and data are available at https://github.com/
orionw/LM-expansions

∗ Work performed during internship at AI2.
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Figure 1: Methods like query expansion and document
expansion typically improve performance when used
with weaker models but not for stronger models; more
accurate models generally lose relevance signal when
expansions are provided. Best expansion and model
results taken from those in Table 1.

documents from unseen domains (Gao et al., 2022;
Wang et al., 2023a; Dai et al., 2022; Jeronymo
et al., 2023; Jagerman et al., 2023). These methods
generally work by providing either the original doc-
uments or queries to the LM, which then generates
additional expanded information to facilitate rele-
vance matching. For example, HyDE (Gao et al.,
2022) uses an LM to generate a fictitious relevant
document for a user query; the document is then
used alongside of the user query to retrieve sim-
ilar, and thus hopefully relevant, real documents.
As another example, Doc2Query (Nogueira et al.,
2019c) uses an LM to generate likely queries for
documents in the collection; queries are appended
to documents to increase their likelihood to match
real user queries. As the LMs doing the expansion
are typically slower but more capable than ranking
models, they can provide additional context and
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connections that the IR models could not (e.g. pro-
viding specialized vocabulary, etc.). This property
is particularly desirable when ranking models are
used in unseen domains, as LMs can help close
distribution shift gaps.

Although many works have shown that LM-
based expansions provide improvements, proposed
approaches are generally tested only a small subset
of retrieval techniques, such as small bi-encoder
models or BM25 (Gao et al., 2022; Jagerman et al.,
2023; Wang et al., 2023a). Further, as new models
continue to be developed in IR and natural lan-
guage processing (NLP), there is a pressing need to
comprehensively analyze the relationship between
expansion techniques, ranking models, and distri-
bution shifts. We seek to fill this gap and aim to
answer the following questions:

RQ1: How do different models impact query
and document expansion (§3)? Across all types
of IR models and architectures, performance is neg-
atively correlated with gains from expansion: after
a certain score threshold these expansions gener-
ally hurt performance (as they blur the relevance
signal from the original documents).

RQ2: How do different distribution shifts im-
pact these results (§4)? Our main results hold
for all types of shift – better models are harmed
by expansion – except for long query shift, where
expansions generally help most-to-all models.

RQ3: Why do expansions hurt stronger IR mod-
els (§5)? We find that query and document ex-
pansions change the keywords that the retrieval
models focus on, obscuring the relevance signal of
the original texts.

Overall, this work aims at answering the follow-
ing question: when should one use LM-based ex-
pansions? Through our investigation, we provide
evidence to help practitioners answer this question.
Our results run counter to the common intuition
that query and document expansion are helpful
techniques in all cases; instead, they show that
LM expansions generally benefit weaker rankers,
but hurt more accurate rankers. Further, analysis
over twelve datasets shows that whether a given
model benefits from expansion varies dramatically
depending on task; datasets with significant distri-
butional shifts (e.g., very long queries) are more
likely to benefit from expansion.

2 Experimental Settings

In this section, we provide an overview of doc-
ument and query expansion methods used in the
reminder of the manuscript, as well as key aspects
of our experimental setup.

We choose expansion techniques according to
two criteria: (i) their overall performance, as
claimed in the paper introducing them, and (ii)
their applicability to a large set of retrieval models.
We note that there exists more specific expansion
techniques for particular architectures, such as Col-
BERT PRF (Wang et al., 2023d,b). However, for
generality we use text-based expansions from LMs
only and avoid model-specific techniques.

We generate expansions from gpt-3.5-turbo2

as it is inexpensive and shows strong performance
in previous work (Wang et al., 2023a; Jagerman
et al., 2023). Since using LMs to generate expan-
sions for large collections would be prohibitive, we
restrict our expansions to the reranking setting, e.g.
the top 100 documents per query found from BM25
following Asai et al. (2022).3

2.1 Query Expansion

We use three types of query expansion, selecting
the best methods from previous work. We note that
although there are infinite strategies for prompt-
ing LMs to develop terms for search, these three
provide the strongest candidates from the literature.

HyDE from Gao et al. (2022) HyDE provides
task-specific instructions for the LM to generate a
document that would answer that question. We use
the prompts from their work when available.4

Chain of Thought from Wang et al. (2023a)
Chain of Thought (CoT) for query expansion was
inspired by Wei et al. (2022) and asks the model

2We use version gpt-3.5-turbo-0613. To show that our
results generalize beyond this specific language model, we
include results using alternative LMs (such as gpt-4-0613)
in Appendix A that show the same conclusion. Prompts and
example input/output can be found in Appendix D and C. We
also explore the placement of these augmentations (should we
prepend/append/replace the original query?) in Appendix B
and show that this also makes little difference.

3Using gpt-3.5-turbo for just Doc2Query on the MS-
Marco collection would cost roughly $4,000 USD (8 million
docs at 250 tokens each) as of September 2023. Thus we
adopt the reranking setting (top 100 docs per query) in order
to evaluate on many datasets.

4We use similar styled prompts for datasets not evaluated
on in the original HyDE paper. We also append a phrase asking
ChatGPT to be concise to match the original HyDE method
which used the much more concise Davinci-003 model (see
Appendix D for the full text of the prompts).
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Figure 2: Effect of expansion over twelve datasets. For each dataset, markers show base performance for models,
while the boxplot indicates the range of changes in scores for document and/or query expansion. Across all datasets
and models, we note a consistent trend: models with lower base performance benefit from expansion; higher
performing rankers generally suffer when expansion techniques are used.

DL Track 2019 FiQA Arguana
Type Model Base QE DE Both Base QE DE Both Base QE DE Both

Fi
rs

t
St

ag
e

DPR 38.4 +6.6 +3.1 +10.8 14.4 +4.7 +1.7 +5.7 34.9 -7.1 +1.6 -4.4
Contriever 49.0 +3.5 +4.0 +8.1 21.3 +3.6 +1.6 +5.1 45.8 -0.1 +2.9 -3.2
Contriever FT 62.3 +1.6 -0.2 +0.6 29.6 +3.2 +0.6 +3.8 48.8 -3.6 +2.0 -2.5
E5 Base v2 67.3 -3.4 -0.9 -3.7 37.8 -0.6 -3.8 -2.5 51.1 -8.4 +2.6 -5.7
MPNet Base v2 68.3 -6.0 -2.9 -6.8 44.5 -4.1 -3.5 -5.7 47.6 -5.1 +5.3 -0.7
E5 Small v2 69.1 -4.8 -1.9 -6.8 36.4 +0.4 -2.9 -0.6 46.1 -8.7 +2.7 -9.8
GTE Large 70.0 -4.5 -1.3 -4.5 41.2 -2.0 -4.1 -3.2 56.8 -8.8 -0.9 -9.0
E5 Large v2 70.1 -5.7 -1.7 -7.6 38.6 -0.9 -2.7 -3.2 48.9 -5.9 +3.2 -3.4

R
er

an
ke

rs

MonoT5-Small 66.6 -2.0 -2.8 -2.8 34.3 +0.1 -0.6 -0.3 21.1 +22.7 -3.0 +22.2
MiniLM-2-v2 68.0 -3.2 -4.1 -5.1 27.5 -2.0 +0.6 -15.8 15.2 +11.4 +10.8 +11.2
SPLADEv2 70.1 -4.3 -3.7 -5.6 33.4 +1.3 -0.2 +1.2 45.0 -4.5 -1.3 -4.0
MonoBERT 70.4 -4.6 -2.0 -4.8 36.2 +0.2 -0.7 +0.0 50.1 -5.7 +2.5 -9.3
MiniLM-4-v2 70.6 -3.0 -2.5 -4.9 33.8 +1.5 -0.3 +1.2 43.4 +0.4 +1.0 -0.8
MonoT5-Base 71.5 -3.2 -1.4 -5.2 39.2 -1.2 -1.2 -0.9 27.0 +20.0 +0.7 +18.7
MonoT5-3B 71.7 -2.8 -2.0 -5.0 45.9 -3.8 -3.2 -5.6 42.4 +6.8 -1.9 +5.2
ColBERTv2 71.8 -4.2 -2.8 -6.4 33.8 -0.4 -0.3 -0.7 47.4 -5.2 -0.6 -4.8
MiniLM-12-v2 72.0 -4.3 -4.5 -5.6 35.5 -0.4 -0.5 +0.0 33.2 +12.0 +1.1 +9.8
MonoT5-Large 72.2 -4.0 -1.8 -5.6 42.8 -2.3 -2.3 -3.1 31.2 +14.8 -2.0 +14.8
LLAMA 72.6 -2.9 -4.9 -7.7 40.0 -3.7 -4.9 -5.8 52.6 -3.9 -6.9 -9.4
LLAMAv2 72.8 -4.2 -4.9 -9.3 41.1 -3.6 -7.4 -7.9 52.3 -1.5 -8.2 -7.0
LLAMAv2-13B 73.6 -4.5 -5.4 -7.3 41.2 -4.5 -4.9 -7.0 49.4 -2.1 -6.0 -4.9

Table 1: Results for the best expansion strategies across different models. QE stands for query expansion (Q-LM
PRF), DE for document expansion (Doc2Query), and Both for the combination (Q-LM PRF + Doc2Query). Colors
indicate a positive or negative delta from the non-augmented base score. Notice that models with higher base scores
are generally harmed by expansions while weaker models benefit from them.

to reason before giving the answer. As the reason-
ing includes relevant information to the query, this
additional text is used as the query expansion. Sim-
ilar techniques have been shown to be effective in
multiple works (Jagerman et al., 2023; Wang et al.,
2023a; Trivedi et al., 2022).

LM-based Pseudo Relevance Feedback (Q-LM
PRF) PRF is a classical technique that shows
retrieved documents to the model doing the expan-
sion. We provide the top 3 relevant documents
found using a bi-encoder model (Contriever) to

the LM. It produces a list of expansion terms and
then updates the original question to include those
terms in a new fluent question. LM-aided PRF has
been shown broadly effective (Mackie et al., 2023;
Jagerman et al., 2023; Wang et al., 2023c).

2.2 Document Expansion

Doc2Query There are fewer widespread LM doc-
ument expansion techniques, with the main one
being Doc2Query (Nogueira et al., 2019c). Work
has found that improving the question generation
model results in higher scores, hence we use Chat-



Axis Dataset # Queries # Documents Avg. D / Q Q Len D Len

In-Domain
TREC DL Track 2019 (Craswell et al., 2020) 43 8,841,823 212.5 5.4 56.6
TREC DL Track 2020 (Craswell et al., 2021) 54 8,841,823 207.9 6.0 56.6

Domain Shift
FiQA-2018 (Maia et al., 2018) 648 57,600 2.6 10.9 137.4
Gooaq Technical (Khashabi et al., 2021) 1,000 4,086 1.0 8.3 44.5
NFCorpus (Boteva et al., 2016) 323 3,633 38.2 3.3 233.5

Relevance Shift
Touché-2020 (Bondarenko et al., 2020) 49 382,545 19.0 6.6 293.7
SciFact Refute (Wadden et al., 2020) 64 5,183 1.2 12.1 214.8

Long Query Shift
Tip of My Tongue (Lin et al., 2023) 2,272 1,877 1.0 144.3 100.5
TREC Clinical Trials ’21 (Roberts et al., 2021) 75 375,580 348.8 133.3 919.5
ArguAna (Wachsmuth et al., 2018) 1,406 8,674 1.0 197.1 170.3

Short Doc Shift
WikiQA (Yang et al., 2015) 369 26,196 1.2 6.3 25.1
Quora (Iyer et al., 2017) 10,000 522,931 1.6 9.5 12.5

Table 2: Statistics of datasets used by type of generalization shift. Avg. D/Q indicates the number of relevant
documents per query. Length is measured in words. The TREC DL Track uses MSMarco data (Nguyen et al., 2016).

DL 2019 Track DL 2020 Track
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

− Base 38.4 62.3 71.2 39.2 57.5 68.3

Q
ue

ry HyDE +18.8 +9.3 -4.0 +13.2 +7.4 -5.8
CoT +12.6 +2.7 -6.7 +5.5 +4.2 -9.3
Q-LM PRF +6.6 +1.6 -2.2 +6.3 +2.7 -3.0

D
oc D2Q +3.1 -0.2 -1.2 +3.1 +1.3 -1.9

D-LM PRF -1.1 -15.5 -23.6 -2.6 -9.1 -19.3

B
ot

h

HyDE + D2Q +21.9 +9.0 -4.5 +15.0 +6.2 -5.4
CoT + D2Q +15.1 +0.8 -7.3 +7.2 +4.2 -8.1
Q-LM PRF + D2Q +10.8 +0.6 -4.2 +8.1 +3.7 -3.3
HyDE + D-LM PRF +16.7 -3.1 -22.8 +11.4 +1.2 -17.9
CoT + D-LM PRF +10.9 -10.9 -25.0 +4.1 -4.4 -21.8
Q+D LM PRF +6.8 -5.6 -14.4 +4.5 -2.4 -11.8

Table 3: In-Domain performance on the TREC Deep Learning Tracks, according to various types of expansions,
showing that expansion typically helps weaker models (like DPR) but hurts stronger models (especially large
reranker models like MonoT5-3B). Colors indicate a positive or negative delta from the non-augmented base score.

GPT instead of T5 for our experiments (Nogueira
et al., 2019a). See Appendix A for results using
alternative LMs for document expansion.

LM-based Document PRF (D-LM PRF) Simi-
lar to the Q-LM PRF technique above, we propose
a document expansion that draws pseudo-relevance
from related queries instead of related documents.
In this setting, where there exists a set of unjudged
user queries, we show the LM the top 5 relevant
queries and ask it to expand the original document
to better answer them.

3 RQ1: How do different models impact
query and document expansion?

Experimental Setting To understand the effects
of different models on the helpfulness of LM-based
expansions, we employ a wide variety of models
from all major IR architectures: DPR (Karpukhin
et al., 2020), ColBERT v2 (Santhanam et al., 2022),

SPLADE v2 (Formal et al., 2021a), MonoBERT
(Nogueira et al., 2019b), the MonoT5 family of
models (Nogueira et al., 2020), the E5 family of
models (Wang et al., 2022b), GTE (Li et al., 2023),
several MiniLM models with varying sizes (Wang
et al., 2020), all-mpnet-v2-base (Reimers and
Gurevych, 2019) and Llama models (Touvron et al.,
2023a,b) we fine-tune on MSMarco.5

Due to the exponential combination of models
and datasets, we evaluate all models on three rep-
resentative datasets in Table 1 (see §5 for details
on datasets and types of generalization) and use
five representative models (DPR, Contriever, Col-
BERTv2, MonoT5-small, and MonoT5-3B) on a
larger suite of datasets (see Figure 2).

We show results in comparison to the “base” ver-
sion (colored grey), e.g. the version without any

5Model information and weights are available at
https://github.com/orionw/LLM-expansions/
llama_for_ranking.md.

https://github.com/orionw/LLM-expansions/llama_for_ranking.md
https://github.com/orionw/LLM-expansions/llama_for_ranking.md


FiQA-2018 GooAQ Technical NFCorpus
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

− Base 14.4 29.6 45.9 42.5 71.0 80.2 24.1 34.6 39.1

Q
ue

ry HyDE +3.6 -0.3 -14.7 +3.1 +3.8 -10.0 +0.3 +0.0 -5.9
CoT +3.6 +0.4 -13.2 +2.0 +2.1 -9.7 -0.7 -0.6 -4.5
Q-LM PRF +4.7 +3.2 -3.8 +6.4 +1.9 -3.4 +0.2 -0.4 -2.7

D
oc D2Q +1.7 +0.6 -3.2 +6.4 +3.0 -1.1 +1.3 +0.6 -0.5

D-LM PRF +3.3 +1.6 -12.5 +3.8 +0.6 -11.4 +0.3 -0.3 -0.7

B
ot

h

HyDE + D2Q +4.5 +0.4 -14.8 +8.2 +5.2 -7.4 +1.6 +0.1 -7.2
CoT + D2Q +4.4 +0.2 -13.4 +7.2 +3.8 -6.9 +0.8 +0.0 -5.6
Q-LM PRF + D2Q +5.7 +3.8 -5.6 +10.9 +4.2 -4.1 +1.4 -0.1 -3.0
HyDE + D-LM PRF +5.8 +1.2 -14.8 +5.3 +2.7 -14.2 +0.8 +0.1 -6.3
CoT + D-LM PRF +6.2 +1.7 -14.9 +3.6 +1.9 -13.6 -0.1 -0.2 -4.2
Q+D LM PRF +7.3 +4.6 -8.4 +7.9 +3.5 -6.4 +0.2 +0.0 -2.8

Table 4: How different expansions affect results on datasets that measure Domain Shift. Colors indicate a positive
or negative delta from the non-augmented base score. Notice that models with higher base scores are generally
harmed by expansions while weaker models benefit from them.

Touche-2020 Scifact-Refute
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

− Base 23.0 24.8 32.6 33.9 76.4 82.1

Q
ue

ry HyDE -0.3 +4.8 -5.9 -9.1 -0.9 -12.3
CoT +0.3 +5.1 -7.4 -7.6 +0.3 -8.8
Q-LM PRF +0.6 +3.9 -1.3 +6.5 +1.1 -1.7

D
oc D2Q -0.2 +0.0 -0.9 +2.0 -1.8 +0.9

D-LM PRF -0.2 -1.2 -8.3 +2.5 -4.6 -16.5

B
ot

h

HyDE + D2Q -0.1 +5.0 -3.0 -6.1 -1.0 -16.6
CoT + D2Q +0.3 +2.6 -5.4 -6.5 -1.1 -16.9
Q-LM PRF + D2Q -0.1 +1.0 -2.0 +9.1 +1.3 -1.1
HyDE + D-LM PRF +0.5 +1.4 -10.1 -5.2 -2.9 -17.6
CoT + D-LM PRF -0.2 +0.8 -8.4 -7.2 -1.5 -19.3
Q+D LM PRF +0.3 +2.5 -2.7 +7.6 -2.5 -4.0

Table 5: How different expansions affect results on datasets that measure Relevance Shift.

expansion. Values above zero (e.g. greater than
the no-expansion version) are colored blue while
values below the base are colored red. Colors are
scaled linearly according to the difference between
the base value and the min/max (i.e., the worst
value in the column will be the max red, while
the best value will be max blue, all others will be
shaded in between).

Effect of Different Models Our results with all
models (Figure 1) shows a consistent pattern: as
base performance on a task increases, the gains
from expansion decrease. We also see this trend
from Table 1 (note that ArguAna results are sorted
by MSMarco performance, when sorted by Ar-
guAna they appear as in Figure 1). Interestingly,
these results do not depend on the model architec-
ture: this is true for bi-encoders, late-interaction
models, neural sparse models, and cross-encoders.

However, do these results hold for other
datasets? Figure 2 answers this and shows the

distributions of scores changes for models when
using expansions over a wide range of datasets. We
find the same pattern: models that perform better
(such as MonoT5-3B) get less from expansions.

4 RQ2: How do different distribution
shifts impact these results?

Experimental Setting We evaluate how query
and document expansion are impacted by different
distribution shifts: in-domain/no shift (MSMarco),
domain shift (e.g. medical, code, legal), relevance
shift (finding the opposite or a counterargument),
and format shift (queries that are long documents or
documents that are short). The datasets we use and
their descriptive statistics are in Table 2. We use
three representative models for these experiments.

In-Domain We use two datasets that test perfor-
mance on the MSMarco collection: TREC Deep
Learning Tracks 2019 and 2020 (Craswell et al.,



Tip of My Tongue TREC CT 2021 Arguana
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

Base 13.4 38.3 39.5 16.4 26.7 25.8 34.9 48.8 40.6

Q
ue

ry HyDE +3.0 -9.4 -26.8 +0.3 +2.1 +4.2 -4.5 -5.4 +15.8
CoT +2.1 -9.5 -23.3 +2.3 +3.0 +3.0 -5.8 -5.3 +11.3
Q-LM PRF -2.9 -1.9 +6.4 +2.2 +0.6 -0.1 -7.1 -3.6 +8.3

D
oc D2Q +1.6 -3.2 -8.5 +0.3 -1.3 -1.8 +1.6 +2.0 -2.1

D-LM PRF +5.5 +2.9 +0.9 -0.7 -0.9 +0.6 +2.3 +3.5 -2.5

B
ot

h

HyDE + D2Q +3.6 -10.7 -29.7 +0.4 +2.1 +2.7 -2.8 -2.5 +12.9
CoT + D2Q +2.2 -10.6 -25.3 +2.3 +1.5 -0.1 -4.3 -3.0 +10.6
Q-LM PRF + D2Q -1.8 -4.7 +2.1 +0.7 -0.9 -0.2 -4.4 -2.5 +6.9
HyDE + D-LM PRF +6.0 -7.2 -32.6 +0.0 +1.0 +3.2 -3.0 +1.0 +10.3
CoT + D-LM PRF +5.3 -7.4 -25.8 +1.9 +2.7 +1.0 -4.0 +0.9 +8.8
Q+D LM PRF +0.7 +1.6 +6.4 +0.6 -1.0 +0.4 -4.0 -0.2 +3.3

Table 6: How different expansions affect results on datasets that measure Long Query Format Shift. Colors
indicate a positive or negative delta from the non-augmented base score. Unlike previous results, notice that all
model benefit from some type of expansions on all three datasets.

WikiQA Quora
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

Base 47.2 68.6 75.9 68.4 86.7 83.9

Q
ue

ry HyDE +16.4 +3.6 -1.6 -15.4 -13.8 -8.2
CoT +9.8 -0.9 -6.1 -32.3 -31.5 -35.4
Q-LM PRF +11.9 -2.2 -4.2 -13.8 -11.4 -7.0

D
oc D2Q +5.4 -1.8 -1.7 -6.2 -3.7 +0.0

D-LM PRF -2.8 -10.8 -21.4 -10.0 -15.6 -17.0

B
ot

h

HyDE + D2Q +17.7 +2.1 -2.7 -11.4 -10.1 -7.1
CoT + D2Q +11.3 -1.5 -6.9 -25.7 -26.3 -32.5
Q-LM PRF + D2Q +13.0 -1.1 -6.2 -9.4 -8.7 -6.9
HyDE + D-LM PRF +12.6 -6.2 -18.0 -21.1 -22.1 -20.2
CoT + D-LM PRF +7.0 -10.3 -19.0 -35.6 -36.8 -41.4
Q+D LM PRF +9.5 -6.1 -10.8 -19.4 -19.6 -17.8

Table 7: How different expansions affect results on datasets that measure Short Document Format Shift. Colors
indicate a positive or negative delta from the non-augmented base score. Notice that models with higher base scores
are generally harmed by expansions while weaker models benefit from them.

2020, 2021)6. Nearly all retrieval models use MS-
Marco for training, hence these are in-domain.

Domain Shift In this setting models must gen-
eralize from their training on standard web docu-
ments (e.g. MSMarco) to new domains, such as
legal or medical text. This type of shift is made dif-
ficult by specialized vocabulary in these domains.
We use NFCorpus (medical) (Boteva et al., 2016),
GooAQ Technical (code) (Khashabi et al., 2021),
and FiQA-2018 (finance) (Maia et al., 2018).

Relevance Shift This setting is characterized by
a difference in the way relevance is defined. Stan-
dard retrieval models have learned to define rele-
vance in terms of casual web searches. However,

6Despite the different names, TREC DL 2019 and 2020
use the same document collection as MSMarco, albeit with
new queries and relevance judgements.

there are other situations where this differs, such
as queries that are looking for opposites, counter-
arguments, or neutral information. We use two
datasets that search for refutations or counterargu-
ments: Touché-2020 (Bondarenko et al., 2020) and
a subset of SciFact (Wadden et al., 2020) whose
gold documents refute the queries claims.

Format Shift Another type of shift is the length
of inputs: generally, queries are short and docu-
ments are paragraph-sized. However, there are
situations where queries could be document-sized
or the documents could be short. This shift tests
whether models can generalize new length formats.

We consider two groups of datasets: for shift to
long query we use Tip of My Tongue (Lin et al.,
2023), TREC Clinical Trials Track 2021 (Roberts
et al., 2021), and ArguAna (Wachsmuth et al.,
2018). For shift to short document, we use two



Query: What are the risks and maximum amount
involved in obtaining a Home Equity Line of
Credit (HELOC) using Bitcoin as collateral?

What is a Home Equity Line of Credit (HELOC) and
how does it work? How can I use home equity to
secure a line of credit? ... What are the risks
associated with a Home Equity Line of Credit
(HELOC)? 

...The most likely tool to use in this case would be
a Home Equity Line of Credit (HELOC). This is a
line of credit for which the full amount is backed
by home equity (difference between market and
book prices). Most likely your financial institution
will apply a factor ...

How can borrowers use bitcoins as collateral for
loans? What are the risks of using volatile assets
as loan collateral? ... Why should investors bear
the risk of using bitcoins as collateral?

Original Expanded

Rank #2

Rank #1

Rank #2

Query: Is it possible to take a
mortgage using Bitcoin as collateral?

... suggest that they borrow the money to invest
with you. They can use their bitcoins as collateral
for the loan. That way, they get the same benefit
and your company doesn't go out of business if the
price of bitcoin drops ...

Rank #1

Figure 3: An example of expansions obscuring the relevance signal. The non-relevant document in red was ranked
higher than the relevant blue document due to the phrase “Home Equity Line of Credit" being added to the query.
The left side indicates original query and documents while the right side shows the query and document expansions.

datasets: Quora (Iyer et al., 2017) and WikiQA
(Yang et al., 2015).7

4.1 Results by Type of Shift

Table 3 shows results for in-domain data on the
2019 and 2020 Deep Learning TREC Tracks. We
see that weaker models improve with different ex-
pansion types, with DPR improving for almost ev-
ery expansion and the stronger Contriever showing
minor improvements for some combinations. How-
ever, when we move to the stronger models (e.g.,
MonoT5-3B), we find that all of these gains disap-
pear and expansions hurt the model.

We find that this trend holds in most other cat-
egories of shift: Table 4 for domain shift, Table 5
for relevance shift, and Table 7 for short document
shift. Note that Figure 2 also shows this visually.

The exceptions to this pattern occur only in for-
mat shift: for Quora (Table 5) where all models
are harmed with expansion and for long query shift
(Table 6) where expansions generally help most
models. When we examine why expansions help
for long query shift, we find that it transforms the
query to become more “standard” (i.e., short) for
MSMarco trained models (e.g., for ArguAna the
query changes from a long document of an argu-
ment to one shorter question that summarizes it).

7Due to the Twitter API restrictions, we could not use
Signal from BEIR.
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Figure 4: Effect of scale on the impact of expansions
(Table 1, MonoT5). Larger models use expansions less.

As no model evaluated in this work is fine-tuned
on long queries, it is an open-question of whether
additional training would make this category of
generalisation easier for models and less reliant on
expansions.

5 RQ3: Why do expansions hurt stronger
IR models?

Sections 3 and 4 show that strong IR models do not
benefit from expansions. But why is this true? One
suggestion might be that larger models are better
able to take advantage of the information in the
original documents. We test this hypothesis and
provide an error analysis to answer these questions.



5.1 Effect of Model Size

To show whether it is solely model size that impacts
the gains from expansion, we use two different
families of models: MonoT5 and E5. If model size
is the cause, we would expect to see larger models
gain less from expansions for both families.

However, Figure 4 shows that model scale is in-
versely correlated with gains from expansion for
the MonoT5-family, but not the E5-family. The cru-
cial difference between them8 can be attributed to
the E5 models having similar performance scores
across sizes whereas T5 has a much wider range:
T5 differs by 21 nDCG@10 points on ArguAna
from 3B to small while E5 differs by only 3 points
from large to small. Thus, we see that model
size impacts gains from expansions only in tan-
dem with the correlation between model size and
performance.

5.2 Error Analysis

If model size is not the reason for this phenomena,
what could be causing it? To gain an intuition
on possible failures of LM-based expansion, we
annotate 30 examples from three datasets where
performance declines when expanding both queries
and documents.

We find that out of the 30 examples, two are
false negatives, i.e., relevant documents that are
unjudged and not labeled as relevant (both from
FiQA). Of the remaining 28, all errors are due to
the expanded version including keywords that hurt
the ranking: deemphasizing pertinent keywords by
shifting focus to less salient keywords that were
already present or to new keywords added by the ex-
pansion. An example of this behavior is in Figure 3,
where we can see how query expansion added the
term “Home Equity Line of Credit” and distracted
from the main focus of the question (using bitcoins
as collateral). On the other hand, when no irrele-
vant information is introduced by LMs, well tuned
ranker models can accurately estimate relevance of
subtly different documents.

6 Discussion

Our results indicate three phenomena regarding
query expansion using LMs: (i) expansion gener-
ally benefit weaker models, such as DPR, while
better performing rankers, such as T5, are penal-

8Another obvious difference is that E5 is a bi-encoder
while MonoT5 is not. However, previous work (Muennighoff,
2022) has shown that bi-encoders also improve with scale.

ized; (ii) exceptions are observed in case of severe
distribution shift, such with very long queries; fi-
nally, (iii) when model performance is negatively
impacted, the cause is generally expansion weak-
ening the original relevance signal.

This implies that even though the LMs are or-
ders of magnitude larger and more powerful than
smaller rerankers, they should not be used to aug-
ment strong performing IR models without careful
testing. The strong performance of reranker models
for generalization confirms previous work by (Rosa
et al., 2022a). Further, Table 3 indicates this char-
acterization of LM expansion also holds even when
models are tested on in-domain collections (no dis-
tribution shift).

Interestingly, our experiments find that the only
distribution shift that consistently needs expansion
is long query format shift; we found no equivalent
result for domain, document, or relevance shift. Fu-
ture work may examine whether improved training
techniques on longer queries can overcome this
limitation or whether longer queries are innately
more difficult for ranking tasks.

7 Related Work

Large Scale Analyses in Neural IR Compre-
hensive analysis in retrieval have provided great
insight into practical uses of retrieval. These in-
clude many aspects of information retrieval, in-
cluding interpretability (MacAvaney et al., 2022),
domain changes (Lupart et al., 2023), syntax phe-
nomena (Chari et al., 2023; Weller et al., 2023),
and relationship between neural models and clas-
sical IR approaches (Formal et al., 2021b; Chen
et al., 2022).

Generalization in Neural IR As retrieval mod-
els have become more effective, attention has
turned to improving and evaluating the way that IR
models generalize to out-of-distribution datasets
(e.g. not MSMarco-like corpora). One prominent
example of this is the BEIR dataset suite (Thakur
et al., 2021), which is commonly used for retrieval
evaluation. Much other work has proposed new
datasets for types of shift (e.g. MTEB (Muen-
nighoff et al., 2023) among others (Han et al., 2023;
Ravfogel et al., 2023; Weller et al., 2023; May-
field et al., 2023)), as well as many new modeling
strategies for better zero-shot retrieval (Dai et al.,
2022; Wang et al., 2022a). We follow these works
by showing different types of generalization and



whether these type of shift change the results for
LM-based expansion techniques.

Effect of Scale on Neural IR Models As in Nat-
ural Language Processing (NLP), IR models typ-
ically improve with scale (Nogueira et al., 2020)
but are also more heavily constrained, due to the
requirement of processing millions of documents
in real-time for live search. Thus, most first-stage
IR models typically use a BERT backbone (San-
thanam et al., 2022; Izacard et al., 2021) while
reranker models have scaled to the billions of pa-
rameters (Nogueira et al., 2020). Previous work on
scaling bi-encoder architectures have also shown
performance gains from scale (Muennighoff, 2022),
but scaling up first-stage retrieval is less common
than scaling cross-encoders.

Due to the effectiveness of larger models, re-
cent work has even shown that a better first-stage
model does not lead to improvements over a BM25
+ reranker pipeline (Rosa et al., 2022a). Thus, for
our experiments we use BM25 as first stage re-
trieval and show results reranking those.

8 Conclusion

We conduct the first large scale analysis on large
language model (LM) based query and document
expansion, studying how model performance, archi-
tecture, and size affects these results. We find that
these expansions improve weaker IR models while
generally harming performance for the strongest
models (including large rerankers and heavily opti-
mized first-stage models). We further show that this
negative correlation between model performance
and gains from expansion are true for a wide variety
of out of distribution datasets, except for long query
shift, where this correlation is weaker. Overall, our
results indicate that LM expansion should not be
used for stronger IR models and should instead be
confined to weaker retrieval models.

Limitations

• This work does not train rankers to deal with
augmentations. That might mitigate negative
effects of some expansions, although it re-
quires having access to supervised data, which
might not be available on out-of domain tasks.

• Deciding whether to use augmentation re-
quires having access to evaluation data for
the target domain; in some cases, such data
might not be available.

• In the current version of the manuscript, we
tested our approach with commercial lan-
guage models available via paid APIs. We
feel this is justified since our contributions are
independent from the specific model used, as
long as it can follow instruction given. Never-
theless, use of commercial APIs limits repro-
ducibility and present a significant barrier to
those who cannot get access to the model.

• Similarly, a replication of this work would
require access to significant computational re-
sources, including GPUs. A rough estimate
shows that generating results for this paper
required north of 10,000 A6000 GPU hours,
with further 5,000 hours required to reach de-
velop a stable experimental platform.

• This work only studies datasets in English.
While LM augmentations could play an im-
portant role in improving non-English, cross-
lingual, and multilingual information retrieval,
they require careful analysis.

Ethical Considerations

• This work shows that LM augmentations
make mistakes; while our system never re-
turns output of LM, inaccuracies might result
in non-relevant documents being presented to
users.
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A Different LMs for Expansion

Here we show results for GPT-4 expansions instead
of ChatGPT in Table 8. We can see that although
absolute numbers differ slightly, there is no change
to the trends discussed in the main paper: i.e. that
stronger models are harmed by expansions while
weaker models benefit. We swap FiQA for NFCor-
pus due to the larger collection size and increased
costs of annotating with GPT-4.

B Placement of Expansions

In Table 9 we show different placements of ex-
pansions (i.e. do we prepend/append/replace the
original query when doing query expansion?). We
find that the placement does not make a signifi-
cant difference to our overall results, as the core
conclusion of the paper remains the same.

C Example Input/Output for expansions

Here we show example input and output for expan-
sion for query and document expansions.

C.1 Document Expansion

We show example expansion from this document
from MSMarco:

Whale Shark. The Whale Shark is the
largest and the heaviest living shark because
its weight is more than 21 tons and its length
is more than 12 meter. It is found in open
oceans and warm waters. It feeds on plank-
ton but some times it also uses other small
fishes as food.

C.1.1 Doc2Query

What is the largest and heaviest living shark
in the world?
What are the characteristics of the Whale
Shark?
Where can the Whale Shark be found?
What does the Whale Shark feed on?
What is the size and weight of the Whale
Shark?

C.1.2 D-LM PRF

The Whale Shark is the largest and heav-
iest living shark, weighing over 21 tons
and measuring over 12 meters in length. It
is found in open oceans and warm waters.
While it primarily feeds on plankton, it oc-
casionally consumes other small fishes as
well.

C.2 Query Expansion

For the MSMarco query “why did the us volunteri-
lay enter ww1" the following output was generated.
For prompt formatting, see Appendix D.
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TREC DL 2019 NFCorpus Arguana
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

Base 38.4 62.3 71.7 24.1 34.6 39.2 34.9 48.8 42.4

C
ha

tG
PT Q-LM PRF +6.6 +1.6 -2.8 +0.2 -0.4 -2.8 -7.1 -3.6 +6.8

D2Q +3.1 -0.2 -2.0 +1.3 +0.6 -0.5 +1.6 +2.0 -1.9
Q-LM PRF + D2Q +10.8 +0.6 -5.0 +1.4 -0.1 -3.0 -4.4 -2.5 +5.2

G
PT

-4 Q-LM PRF +13.3 +5.2 -0.6 -7.8 -17.5 -22.6 -6.2 -4.5 +4.5
D2Q -4.3 -14.0 -2.3 +1.2 +1.0 -0.1 +0.9 +1.2 +0.2
Q-LM PRF + D2Q +8.0 -8.6 -3.2 -7.6 -17.8 -23.3 -4.8 -2.9 +5.2

Table 8: How different LLMs used as the generator affect results. Colors indicate a positive or negative delta from
the non-augmented base score. Although there are small differences between models the overall trends are the same.

MSMarco 2019 FiQA Arguana
Type Model Contriever MonoT5-small MonoT5-3B Contriever MonoT5-small MonoT5-3B Contriever MonoT5-small MonoT5-3B

− Base 49.0 66.6 71.2 21.3 34.3 45.9 45.8 21.0 40.6

Q
ue

ry Prepend +8.1 -2.8 -4.2 +5.1 -0.3 -5.6 -3.2 +22.2 +6.9
Append +9.8 -1.6 -3.5 +4.1 +0.8 -4.6 -3.5 +22.6 +8.4
Replace +8.3 -7.3 -7.9 +7.2 -3.2 -8.8 -15.9 +19.3 +3.3

D
oc

Prepend +8.5 -2.2 -1.9 +5.9 -2.0 -3.1 +1.4 -5.4 -12.4
Append +10.3 -0.8 -1.4 +4.0 -1.4 -2.2 +0.4 -6.8 -8.6
Replace +9.3 -8.9 -6.2 +8.3 -6.9 -8.8 -4.1 -11.0 -20.1

B
ot

h

Prepend/Prepend +9.4 -2.2 -2.0 +5.9 -4.0 -4.6 +1.5 -9.7 -19.8
Prepend/Append +11.0 -0.9 -1.9 +4.1 -3.3 -2.8 +0.5 -8.7 -18.3
Prepend/Replace +9.6 -9.0 -6.2 +8.1 -8.5 -9.3 -5.1 -10.0 -26.8
Append/Prenpend +3.5 -2.0 -2.2 +3.6 +0.1 -3.8 -0.1 +22.7 +8.3
Append/Append +2.7 -1.7 -1.1 +4.8 -3.5 -2.0 -0.5 -5.3 -9.0
Append/Replace +3.0 -1.7 -1.3 +4.6 -5.6 -2.2 -0.3 -8.0 -18.8
Replace/Prepend +4.0 -2.8 -1.2 +1.6 -0.6 -3.2 +2.9 -3.0 -2.1
Replace/Append +5.9 +0.2 -0.7 +0.9 +0.6 -1.2 +1.2 -1.5 -0.9
Replace/Replace +5.7 -11.8 -8.7 +4.4 -5.3 -10.4 -1.0 -5.0 -9.1

Table 9: How different placements of the expansions affect results (e.g. prepend/append/replace). Colors indicate
a positive or negative delta from the non-augmented base score. Although there are small differences the overall
trends are the same.

C.2.1 HyDE

The United States voluntarily entered World
War I primarily due to a combination of fac-
tors. Firstly, the sinking of the British ocean
liner RMS Lusitania by a German U-boat in
1915, resulting in the loss of American lives,
created a strong public outcry for interven-
tion. Additionally, Germany’s resumption
of unrestricted submarine warfare in 1917
further escalated tensions. Furthermore, the
interception of the Zimmermann Telegram,
which revealed Germany’s proposal to Mex-
ico for a military alliance against the United
States, heightened fears of potential threats
to American security. These events, cou-
pled with a desire to protect American inter-
ests and uphold democratic principles, ulti-
mately led the United States to voluntarily
join the war effort.

C.2.2 Q-LM PRF

What were the factors leading to the United
States’ voluntary entry into WW1 and what
were the consequences of their decision to
join the Allies?



C.2.3 Chain of Thought

The United States voluntarily entered World
War I primarily due to a combination of fac-
tors. One of the key reasons was the Ger-
man unrestricted submarine warfare, which
threatened American lives and interests at
sea. Additionally, the interception and de-
coding of the Zimmerman Telegram, in
which Germany proposed an alliance with
Mexico against the US, further fueled pub-
lic sentiment for intervention. Moreover,
there was a desire to protect American eco-
nomic interests, as the US had significant
trade ties with the Allied powers. Lastly,
President Woodrow Wilson’s belief in pro-
moting democracy and his vision for a post-
war world order based on the principles of
self-determination and collective security
also played a role in the US decision to en-
ter the war.

D Prompts for LM expansions

Here we show the prompts used for LM query and
document expansion.

D.1 Query Expansions

D.1.1 HyDE

We use the prompts from their paper, which are
dataset specific, in this manner:

<SPECIFIC PROMPT>

<Type of Input>: QUERY
<TYPE OF OUTPUT> (one short paragraph
max):

for example on Clinical Trials we use:

Please write a clinical trial summary that
would apply to the following patient.

Patient Info: QUERY
Trial Summary (one short paragraph max):

and on FiQA we use:

Please write a financial article passage to
answer the question

Question: QUERY
Passage (one short paragraph max):

D.1.2 Q-LM PRF

You are a query expansion engine, primed
and ready to take in text and output
additional keywords will provide new
and expanded context behind the original
input. Your extensive world knowledge and
linguistic creativity enables you to provide
questions that maximally optimize the
new questions to find new websites. You
**always** provide creative synonyms and
acronym expansions in your new queries
that will provide additional insight.

Be sure to use new words and spell
out acronyms (or add new acronyms).
Hint: think of ***new synonyms and/or
acronyms*** for “QUESTION" using
these documents for inspiration:

DOCUMENTS

Return the following information, filling it
in:
Input: QUESTION
Comma Separated List of 10 important
New Keywords: “““NEW KEYWORDS
HERE"""
New Question (combining Input and New
Keywords, only **one** new question
that expands upon the Input): “““NEW
QUESTION HERE"""

Your output:

D.1.3 Chain of Thought

We use a the same specific prompt for CoT as we
do for HyDE. The format is as follows:



<SPECIFIC PROMPT>

QUESTION

Give the rationale (one short paragraph
max) before answering.

D.2 Document Expansions

D.2.1 D-LM PRF

Change the following document to answer
these questions, if they are partially
answered by the document. If the queries
are not relevant, ignore them. Your new
documents should be one concise paragraph
following the examples.

Example 1:

Queries:
1. “how much caffeine is in a 12 ounce cup
of coffee?"
2. “what are the effects of alcohol and caf-
feine"
3. “what can pregnant women not do?"
Document: “We don’t know a lot about
the effects of caffeine during pregnancy on
you and your baby. So it’s best to limit
the amount you get each day. If you are
pregnant, limit caffeine to 200 milligrams
each day. This is about the amount in 1½
8-ounce cups of coffee or one 12-ounce cup
of coffee."
New Document (similar to Document):
“There is a lack of research about the effects
of caffeine during pregnancy on you and
your baby. So it’s best to limit the amount
you get each day. If you are pregnant, limit
caffeine to 200 milligrams (mg) each day.
This is about the amount in 1½ 8-ounce
cups of coffee or one 12-ounce cup of
coffee (e.g. 200 milligrams)."

Example 2:

Queries:
QUERIES
Document: “DOCUMENT"
New Document (similar to Document):

D.2.2 Doc2Query

You are an optimized query expansion
model, ExpansionGPT. You will write 5
queries for the given document that help
retrieval models better find this document
during search.

Document: “QUESTION"

Queries:
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